Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1b Structured version   Visualization version   Unicode version

Theorem archiabllem1b 29746
Description: Lemma for archiabl 29752. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b  |-  B  =  ( Base `  W
)
archiabllem.0  |-  .0.  =  ( 0g `  W )
archiabllem.e  |-  .<_  =  ( le `  W )
archiabllem.t  |-  .<  =  ( lt `  W )
archiabllem.m  |-  .x.  =  (.g
`  W )
archiabllem.g  |-  ( ph  ->  W  e. oGrp )
archiabllem.a  |-  ( ph  ->  W  e. Archi )
archiabllem1.u  |-  ( ph  ->  U  e.  B )
archiabllem1.p  |-  ( ph  ->  .0.  .<  U )
archiabllem1.s  |-  ( (
ph  /\  x  e.  B  /\  .0.  .<  x
)  ->  U  .<_  x )
Assertion
Ref Expression
archiabllem1b  |-  ( (
ph  /\  y  e.  B )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
Distinct variable groups:    x, n, y, B    U, n, x   
n, W, x, y    ph, n, x, y    .x. , n, x    .0. , n, x    .< , n, x    x,  .<_
Allowed substitution hints:    .< ( y)    .x. ( y)    U( y)    .<_ ( y, n)    .0. ( y)

Proof of Theorem archiabllem1b
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 0zd 11389 . . 3  |-  ( ( ( ph  /\  y  e.  B )  /\  y  =  .0.  )  ->  0  e.  ZZ )
2 simpr 477 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  y  =  .0.  )  ->  y  =  .0.  )
3 archiabllem1.u . . . . . 6  |-  ( ph  ->  U  e.  B )
4 archiabllem.b . . . . . . 7  |-  B  =  ( Base `  W
)
5 archiabllem.0 . . . . . . 7  |-  .0.  =  ( 0g `  W )
6 archiabllem.m . . . . . . 7  |-  .x.  =  (.g
`  W )
74, 5, 6mulg0 17546 . . . . . 6  |-  ( U  e.  B  ->  (
0  .x.  U )  =  .0.  )
83, 7syl 17 . . . . 5  |-  ( ph  ->  ( 0  .x.  U
)  =  .0.  )
98ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  y  =  .0.  )  ->  (
0  .x.  U )  =  .0.  )
102, 9eqtr4d 2659 . . 3  |-  ( ( ( ph  /\  y  e.  B )  /\  y  =  .0.  )  ->  y  =  ( 0  .x. 
U ) )
11 oveq1 6657 . . . . 5  |-  ( n  =  0  ->  (
n  .x.  U )  =  ( 0  .x. 
U ) )
1211eqeq2d 2632 . . . 4  |-  ( n  =  0  ->  (
y  =  ( n 
.x.  U )  <->  y  =  ( 0  .x.  U
) ) )
1312rspcev 3309 . . 3  |-  ( ( 0  e.  ZZ  /\  y  =  ( 0 
.x.  U ) )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
141, 10, 13syl2anc 693 . 2  |-  ( ( ( ph  /\  y  e.  B )  /\  y  =  .0.  )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
15 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  m  e.  NN )
1615nnzd 11481 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  m  e.  ZZ )
1716znegcld 11484 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  -u m  e.  ZZ )
1833ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  U  e.  B )
1918ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  U  e.  B
)
20 eqid 2622 . . . . . . . 8  |-  ( invg `  W )  =  ( invg `  W )
214, 6, 20mulgnegnn 17551 . . . . . . 7  |-  ( ( m  e.  NN  /\  U  e.  B )  ->  ( -u m  .x.  U )  =  ( ( invg `  W ) `  (
m  .x.  U )
) )
2215, 19, 21syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  ( -u m  .x.  U )  =  ( ( invg `  W ) `  (
m  .x.  U )
) )
23 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  ( ( invg `  W ) `
 y )  =  ( m  .x.  U
) )
2423fveq2d 6195 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 y ) )  =  ( ( invg `  W ) `
 ( m  .x.  U ) ) )
25 archiabllem.g . . . . . . . . . 10  |-  ( ph  ->  W  e. oGrp )
26253ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  W  e. oGrp )
27 ogrpgrp 29703 . . . . . . . . 9  |-  ( W  e. oGrp  ->  W  e.  Grp )
2826, 27syl 17 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  W  e.  Grp )
29 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  y  e.  B )
304, 20grpinvinv 17482 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  W ) `  (
( invg `  W ) `  y
) )  =  y )
3128, 29, 30syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  ( ( invg `  W ) `  (
( invg `  W ) `  y
) )  =  y )
3231ad2antrr 762 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 y ) )  =  y )
3322, 24, 323eqtr2rd 2663 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  y  =  (
-u m  .x.  U
) )
34 oveq1 6657 . . . . . . 7  |-  ( n  =  -u m  ->  (
n  .x.  U )  =  ( -u m  .x.  U ) )
3534eqeq2d 2632 . . . . . 6  |-  ( n  =  -u m  ->  (
y  =  ( n 
.x.  U )  <->  y  =  ( -u m  .x.  U
) ) )
3635rspcev 3309 . . . . 5  |-  ( (
-u m  e.  ZZ  /\  y  =  ( -u m  .x.  U ) )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
3717, 33, 36syl2anc 693 . . . 4  |-  ( ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  m  e.  NN )  /\  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
38 archiabllem.e . . . . 5  |-  .<_  =  ( le `  W )
39 archiabllem.t . . . . 5  |-  .<  =  ( lt `  W )
40 archiabllem.a . . . . . 6  |-  ( ph  ->  W  e. Archi )
41403ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  W  e. Archi )
42 archiabllem1.p . . . . . 6  |-  ( ph  ->  .0.  .<  U )
43423ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  .0.  .<  U )
44 simp1 1061 . . . . . 6  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  ph )
45 archiabllem1.s . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  .0.  .<  x
)  ->  U  .<_  x )
4644, 45syl3an1 1359 . . . . 5  |-  ( ( ( ph  /\  y  e.  B  /\  y  .<  .0.  )  /\  x  e.  B  /\  .0.  .<  x )  ->  U  .<_  x )
474, 20grpinvcl 17467 . . . . . 6  |-  ( ( W  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  W ) `  y
)  e.  B )
4828, 29, 47syl2anc 693 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  ( ( invg `  W ) `  y
)  e.  B )
494, 5grpidcl 17450 . . . . . . . 8  |-  ( W  e.  Grp  ->  .0.  e.  B )
5028, 49syl 17 . . . . . . 7  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  .0.  e.  B )
51 simp3 1063 . . . . . . 7  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  y  .<  .0.  )
52 eqid 2622 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
534, 39, 52ogrpaddlt 29718 . . . . . . 7  |-  ( ( W  e. oGrp  /\  (
y  e.  B  /\  .0.  e.  B  /\  (
( invg `  W ) `  y
)  e.  B )  /\  y  .<  .0.  )  ->  ( y ( +g  `  W ) ( ( invg `  W
) `  y )
)  .<  (  .0.  ( +g  `  W ) ( ( invg `  W ) `  y
) ) )
5426, 29, 50, 48, 51, 53syl131anc 1339 . . . . . 6  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  ( y ( +g  `  W ) ( ( invg `  W
) `  y )
)  .<  (  .0.  ( +g  `  W ) ( ( invg `  W ) `  y
) ) )
554, 52, 5, 20grprinv 17469 . . . . . . 7  |-  ( ( W  e.  Grp  /\  y  e.  B )  ->  ( y ( +g  `  W ) ( ( invg `  W
) `  y )
)  =  .0.  )
5628, 29, 55syl2anc 693 . . . . . 6  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  ( y ( +g  `  W ) ( ( invg `  W
) `  y )
)  =  .0.  )
574, 52, 5grplid 17452 . . . . . . 7  |-  ( ( W  e.  Grp  /\  ( ( invg `  W ) `  y
)  e.  B )  ->  (  .0.  ( +g  `  W ) ( ( invg `  W ) `  y
) )  =  ( ( invg `  W ) `  y
) )
5828, 48, 57syl2anc 693 . . . . . 6  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  (  .0.  ( +g  `  W ) ( ( invg `  W
) `  y )
)  =  ( ( invg `  W
) `  y )
)
5954, 56, 583brtr3d 4684 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  .0.  .<  ( ( invg `  W ) `
 y ) )
604, 5, 38, 39, 6, 26, 41, 18, 43, 46, 48, 59archiabllem1a 29745 . . . 4  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  E. m  e.  NN  ( ( invg `  W ) `  y
)  =  ( m 
.x.  U ) )
6137, 60r19.29a 3078 . . 3  |-  ( (
ph  /\  y  e.  B  /\  y  .<  .0.  )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
62613expa 1265 . 2  |-  ( ( ( ph  /\  y  e.  B )  /\  y  .<  .0.  )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
63 nnssz 11397 . . 3  |-  NN  C_  ZZ
64253ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  W  e. oGrp )
65403ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  W  e. Archi )
6633ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  U  e.  B )
67423ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  .0.  .<  U )
68 simp1 1061 . . . . . 6  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  ph )
6968, 45syl3an1 1359 . . . . 5  |-  ( ( ( ph  /\  y  e.  B  /\  .0.  .<  y )  /\  x  e.  B  /\  .0.  .<  x )  ->  U  .<_  x )
70 simp2 1062 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  y  e.  B )
71 simp3 1063 . . . . 5  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  .0.  .<  y
)
724, 5, 38, 39, 6, 64, 65, 66, 67, 69, 70, 71archiabllem1a 29745 . . . 4  |-  ( (
ph  /\  y  e.  B  /\  .0.  .<  y
)  ->  E. n  e.  NN  y  =  ( n  .x.  U ) )
73723expa 1265 . . 3  |-  ( ( ( ph  /\  y  e.  B )  /\  .0.  .< 
y )  ->  E. n  e.  NN  y  =  ( n  .x.  U ) )
74 ssrexv 3667 . . 3  |-  ( NN  C_  ZZ  ->  ( E. n  e.  NN  y  =  ( n  .x.  U )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) ) )
7563, 73, 74mpsyl 68 . 2  |-  ( ( ( ph  /\  y  e.  B )  /\  .0.  .< 
y )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
76 isogrp 29702 . . . . . 6  |-  ( W  e. oGrp 
<->  ( W  e.  Grp  /\  W  e. oMnd ) )
7776simprbi 480 . . . . 5  |-  ( W  e. oGrp  ->  W  e. oMnd )
78 omndtos 29705 . . . . 5  |-  ( W  e. oMnd  ->  W  e. Toset )
7925, 77, 783syl 18 . . . 4  |-  ( ph  ->  W  e. Toset )
8079adantr 481 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  W  e. Toset )
81 simpr 477 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
8225, 27, 493syl 18 . . . 4  |-  ( ph  ->  .0.  e.  B )
8382adantr 481 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  .0.  e.  B )
844, 39tlt3 29665 . . 3  |-  ( ( W  e. Toset  /\  y  e.  B  /\  .0.  e.  B )  ->  (
y  =  .0.  \/  y  .<  .0.  \/  .0.  .< 
y ) )
8580, 81, 83, 84syl3anc 1326 . 2  |-  ( (
ph  /\  y  e.  B )  ->  (
y  =  .0.  \/  y  .<  .0.  \/  .0.  .< 
y ) )
8614, 62, 75, 85mpjao3dan 1395 1  |-  ( (
ph  /\  y  e.  B )  ->  E. n  e.  ZZ  y  =  ( n  .x.  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   -ucneg 10267   NNcn 11020   ZZcz 11377   Basecbs 15857   +g cplusg 15941   lecple 15948   0gc0g 16100   ltcplt 16941  Tosetctos 17033   Grpcgrp 17422   invgcminusg 17423  .gcmg 17540  oMndcomnd 29697  oGrpcogrp 29698  Archicarchi 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-omnd 29699  df-ogrp 29700  df-inftm 29732  df-archi 29733
This theorem is referenced by:  archiabllem1  29747
  Copyright terms: Public domain W3C validator