| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem1b | Structured version Visualization version Unicode version | ||
| Description: Lemma for archiabl 29752. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| archiabllem.b |
|
| archiabllem.0 |
|
| archiabllem.e |
|
| archiabllem.t |
|
| archiabllem.m |
|
| archiabllem.g |
|
| archiabllem.a |
|
| archiabllem1.u |
|
| archiabllem1.p |
|
| archiabllem1.s |
|
| Ref | Expression |
|---|---|
| archiabllem1b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 11389 |
. . 3
| |
| 2 | simpr 477 |
. . . 4
| |
| 3 | archiabllem1.u |
. . . . . 6
| |
| 4 | archiabllem.b |
. . . . . . 7
| |
| 5 | archiabllem.0 |
. . . . . . 7
| |
| 6 | archiabllem.m |
. . . . . . 7
| |
| 7 | 4, 5, 6 | mulg0 17546 |
. . . . . 6
|
| 8 | 3, 7 | syl 17 |
. . . . 5
|
| 9 | 8 | ad2antrr 762 |
. . . 4
|
| 10 | 2, 9 | eqtr4d 2659 |
. . 3
|
| 11 | oveq1 6657 |
. . . . 5
| |
| 12 | 11 | eqeq2d 2632 |
. . . 4
|
| 13 | 12 | rspcev 3309 |
. . 3
|
| 14 | 1, 10, 13 | syl2anc 693 |
. 2
|
| 15 | simplr 792 |
. . . . . . 7
| |
| 16 | 15 | nnzd 11481 |
. . . . . 6
|
| 17 | 16 | znegcld 11484 |
. . . . 5
|
| 18 | 3 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 19 | 18 | ad2antrr 762 |
. . . . . . 7
|
| 20 | eqid 2622 |
. . . . . . . 8
| |
| 21 | 4, 6, 20 | mulgnegnn 17551 |
. . . . . . 7
|
| 22 | 15, 19, 21 | syl2anc 693 |
. . . . . 6
|
| 23 | simpr 477 |
. . . . . . 7
| |
| 24 | 23 | fveq2d 6195 |
. . . . . 6
|
| 25 | archiabllem.g |
. . . . . . . . . 10
| |
| 26 | 25 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 27 | ogrpgrp 29703 |
. . . . . . . . 9
| |
| 28 | 26, 27 | syl 17 |
. . . . . . . 8
|
| 29 | simp2 1062 |
. . . . . . . 8
| |
| 30 | 4, 20 | grpinvinv 17482 |
. . . . . . . 8
|
| 31 | 28, 29, 30 | syl2anc 693 |
. . . . . . 7
|
| 32 | 31 | ad2antrr 762 |
. . . . . 6
|
| 33 | 22, 24, 32 | 3eqtr2rd 2663 |
. . . . 5
|
| 34 | oveq1 6657 |
. . . . . . 7
| |
| 35 | 34 | eqeq2d 2632 |
. . . . . 6
|
| 36 | 35 | rspcev 3309 |
. . . . 5
|
| 37 | 17, 33, 36 | syl2anc 693 |
. . . 4
|
| 38 | archiabllem.e |
. . . . 5
| |
| 39 | archiabllem.t |
. . . . 5
| |
| 40 | archiabllem.a |
. . . . . 6
| |
| 41 | 40 | 3ad2ant1 1082 |
. . . . 5
|
| 42 | archiabllem1.p |
. . . . . 6
| |
| 43 | 42 | 3ad2ant1 1082 |
. . . . 5
|
| 44 | simp1 1061 |
. . . . . 6
| |
| 45 | archiabllem1.s |
. . . . . 6
| |
| 46 | 44, 45 | syl3an1 1359 |
. . . . 5
|
| 47 | 4, 20 | grpinvcl 17467 |
. . . . . 6
|
| 48 | 28, 29, 47 | syl2anc 693 |
. . . . 5
|
| 49 | 4, 5 | grpidcl 17450 |
. . . . . . . 8
|
| 50 | 28, 49 | syl 17 |
. . . . . . 7
|
| 51 | simp3 1063 |
. . . . . . 7
| |
| 52 | eqid 2622 |
. . . . . . . 8
| |
| 53 | 4, 39, 52 | ogrpaddlt 29718 |
. . . . . . 7
|
| 54 | 26, 29, 50, 48, 51, 53 | syl131anc 1339 |
. . . . . 6
|
| 55 | 4, 52, 5, 20 | grprinv 17469 |
. . . . . . 7
|
| 56 | 28, 29, 55 | syl2anc 693 |
. . . . . 6
|
| 57 | 4, 52, 5 | grplid 17452 |
. . . . . . 7
|
| 58 | 28, 48, 57 | syl2anc 693 |
. . . . . 6
|
| 59 | 54, 56, 58 | 3brtr3d 4684 |
. . . . 5
|
| 60 | 4, 5, 38, 39, 6, 26, 41, 18, 43, 46, 48, 59 | archiabllem1a 29745 |
. . . 4
|
| 61 | 37, 60 | r19.29a 3078 |
. . 3
|
| 62 | 61 | 3expa 1265 |
. 2
|
| 63 | nnssz 11397 |
. . 3
| |
| 64 | 25 | 3ad2ant1 1082 |
. . . . 5
|
| 65 | 40 | 3ad2ant1 1082 |
. . . . 5
|
| 66 | 3 | 3ad2ant1 1082 |
. . . . 5
|
| 67 | 42 | 3ad2ant1 1082 |
. . . . 5
|
| 68 | simp1 1061 |
. . . . . 6
| |
| 69 | 68, 45 | syl3an1 1359 |
. . . . 5
|
| 70 | simp2 1062 |
. . . . 5
| |
| 71 | simp3 1063 |
. . . . 5
| |
| 72 | 4, 5, 38, 39, 6, 64, 65, 66, 67, 69, 70, 71 | archiabllem1a 29745 |
. . . 4
|
| 73 | 72 | 3expa 1265 |
. . 3
|
| 74 | ssrexv 3667 |
. . 3
| |
| 75 | 63, 73, 74 | mpsyl 68 |
. 2
|
| 76 | isogrp 29702 |
. . . . . 6
| |
| 77 | 76 | simprbi 480 |
. . . . 5
|
| 78 | omndtos 29705 |
. . . . 5
| |
| 79 | 25, 77, 78 | 3syl 18 |
. . . 4
|
| 80 | 79 | adantr 481 |
. . 3
|
| 81 | simpr 477 |
. . 3
| |
| 82 | 25, 27, 49 | 3syl 18 |
. . . 4
|
| 83 | 82 | adantr 481 |
. . 3
|
| 84 | 4, 39 | tlt3 29665 |
. . 3
|
| 85 | 80, 81, 83, 84 | syl3anc 1326 |
. 2
|
| 86 | 14, 62, 75, 85 | mpjao3dan 1395 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-toset 17034 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-omnd 29699 df-ogrp 29700 df-inftm 29732 df-archi 29733 |
| This theorem is referenced by: archiabllem1 29747 |
| Copyright terms: Public domain | W3C validator |