Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1a Structured version   Visualization version   Unicode version

Theorem archiabllem1a 29745
Description: Lemma for archiabl 29752: In case an archimedean group  W admits a smallest positive element  U, then any positive element  X of  W can be written as  ( n  .x.  U ) with  n  e.  NN. Since the reciprocal holds for negative elements,  W is then isomorphic to  ZZ. (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b  |-  B  =  ( Base `  W
)
archiabllem.0  |-  .0.  =  ( 0g `  W )
archiabllem.e  |-  .<_  =  ( le `  W )
archiabllem.t  |-  .<  =  ( lt `  W )
archiabllem.m  |-  .x.  =  (.g
`  W )
archiabllem.g  |-  ( ph  ->  W  e. oGrp )
archiabllem.a  |-  ( ph  ->  W  e. Archi )
archiabllem1.u  |-  ( ph  ->  U  e.  B )
archiabllem1.p  |-  ( ph  ->  .0.  .<  U )
archiabllem1.s  |-  ( (
ph  /\  x  e.  B  /\  .0.  .<  x
)  ->  U  .<_  x )
archiabllem1a.x  |-  ( ph  ->  X  e.  B )
archiabllem1a.c  |-  ( ph  ->  .0.  .<  X )
Assertion
Ref Expression
archiabllem1a  |-  ( ph  ->  E. n  e.  NN  X  =  ( n  .x.  U ) )
Distinct variable groups:    x, n, B    U, n, x    n, W, x    n, X, x    ph, n, x    .x. , n, x    .0. , n, x    .< , n, x   
x,  .<_
Allowed substitution hint:    .<_ ( n)

Proof of Theorem archiabllem1a
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . 4  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  m  e.  NN0 )
2 nn0p1nn 11332 . . . 4  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  NN )
31, 2syl 17 . . 3  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( m  +  1 )  e.  NN )
4 archiabllem1.u . . . . . . . 8  |-  ( ph  ->  U  e.  B )
54ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  U  e.  B )
6 archiabllem.b . . . . . . . 8  |-  B  =  ( Base `  W
)
7 archiabllem.m . . . . . . . 8  |-  .x.  =  (.g
`  W )
86, 7mulg1 17548 . . . . . . 7  |-  ( U  e.  B  ->  (
1  .x.  U )  =  U )
95, 8syl 17 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( 1  .x.  U
)  =  U )
109oveq1d 6665 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( 1  .x. 
U ) ( +g  `  W ) ( m 
.x.  U ) )  =  ( U ( +g  `  W ) ( m  .x.  U
) ) )
11 archiabllem.g . . . . . . . 8  |-  ( ph  ->  W  e. oGrp )
1211ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  W  e. oGrp )
13 ogrpgrp 29703 . . . . . . 7  |-  ( W  e. oGrp  ->  W  e.  Grp )
1412, 13syl 17 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  W  e.  Grp )
15 1zzd 11408 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
1  e.  ZZ )
161nn0zd 11480 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  m  e.  ZZ )
17 eqid 2622 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
186, 7, 17mulgdir 17573 . . . . . 6  |-  ( ( W  e.  Grp  /\  ( 1  e.  ZZ  /\  m  e.  ZZ  /\  U  e.  B )
)  ->  ( (
1  +  m ) 
.x.  U )  =  ( ( 1  .x. 
U ) ( +g  `  W ) ( m 
.x.  U ) ) )
1914, 15, 16, 5, 18syl13anc 1328 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( 1  +  m )  .x.  U
)  =  ( ( 1  .x.  U ) ( +g  `  W
) ( m  .x.  U ) ) )
20 isogrp 29702 . . . . . . . . . 10  |-  ( W  e. oGrp 
<->  ( W  e.  Grp  /\  W  e. oMnd ) )
2120simprbi 480 . . . . . . . . 9  |-  ( W  e. oGrp  ->  W  e. oMnd )
22 omndtos 29705 . . . . . . . . 9  |-  ( W  e. oMnd  ->  W  e. Toset )
23 tospos 29658 . . . . . . . . 9  |-  ( W  e. Toset  ->  W  e.  Poset )
2421, 22, 233syl 18 . . . . . . . 8  |-  ( W  e. oGrp  ->  W  e.  Poset )
2512, 24syl 17 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  W  e.  Poset )
26 archiabllem1a.x . . . . . . . . 9  |-  ( ph  ->  X  e.  B )
2726ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  X  e.  B )
286, 7mulgcl 17559 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  m  e.  ZZ  /\  U  e.  B )  ->  (
m  .x.  U )  e.  B )
2914, 16, 5, 28syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( m  .x.  U
)  e.  B )
30 eqid 2622 . . . . . . . . 9  |-  ( -g `  W )  =  (
-g `  W )
316, 30grpsubcl 17495 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  X  e.  B  /\  ( m  .x.  U )  e.  B )  -> 
( X ( -g `  W ) ( m 
.x.  U ) )  e.  B )
3214, 27, 29, 31syl3anc 1326 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( X ( -g `  W ) ( m 
.x.  U ) )  e.  B )
3316peano2zd 11485 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( m  +  1 )  e.  ZZ )
346, 7mulgcl 17559 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  ( m  +  1
)  e.  ZZ  /\  U  e.  B )  ->  ( ( m  + 
1 )  .x.  U
)  e.  B )
3514, 33, 5, 34syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( m  + 
1 )  .x.  U
)  e.  B )
36 simprr 796 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  X  .<_  ( ( m  +  1 )  .x.  U ) )
37 archiabllem.e . . . . . . . . . 10  |-  .<_  =  ( le `  W )
386, 37, 30ogrpsub 29717 . . . . . . . . 9  |-  ( ( W  e. oGrp  /\  ( X  e.  B  /\  ( ( m  + 
1 )  .x.  U
)  e.  B  /\  ( m  .x.  U )  e.  B )  /\  X  .<_  ( ( m  +  1 )  .x.  U ) )  -> 
( X ( -g `  W ) ( m 
.x.  U ) ) 
.<_  ( ( ( m  +  1 )  .x.  U ) ( -g `  W ) ( m 
.x.  U ) ) )
3912, 27, 35, 29, 36, 38syl131anc 1339 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( X ( -g `  W ) ( m 
.x.  U ) ) 
.<_  ( ( ( m  +  1 )  .x.  U ) ( -g `  W ) ( m 
.x.  U ) ) )
401nn0cnd 11353 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  m  e.  CC )
41 1cnd 10056 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
1  e.  CC )
4240, 41pncan2d 10394 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( m  + 
1 )  -  m
)  =  1 )
4342oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( ( m  +  1 )  -  m )  .x.  U
)  =  ( 1 
.x.  U ) )
446, 7, 30mulgsubdir 17582 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  ( ( m  + 
1 )  e.  ZZ  /\  m  e.  ZZ  /\  U  e.  B )
)  ->  ( (
( m  +  1 )  -  m ) 
.x.  U )  =  ( ( ( m  +  1 )  .x.  U ) ( -g `  W ) ( m 
.x.  U ) ) )
4514, 33, 16, 5, 44syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( ( m  +  1 )  -  m )  .x.  U
)  =  ( ( ( m  +  1 )  .x.  U ) ( -g `  W
) ( m  .x.  U ) ) )
4643, 45, 93eqtr3d 2664 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( ( m  +  1 )  .x.  U ) ( -g `  W ) ( m 
.x.  U ) )  =  U )
4739, 46breqtrd 4679 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( X ( -g `  W ) ( m 
.x.  U ) ) 
.<_  U )
48 archiabllem1.s . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B  /\  .0.  .<  x
)  ->  U  .<_  x )
49483expia 1267 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .<  x  ->  U  .<_  x ) )
5049ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  B  (  .0.  .<  x  ->  U 
.<_  x ) )
5150ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  A. x  e.  B  (  .0.  .<  x  ->  U 
.<_  x ) )
52 archiabllem.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  W )
536, 52, 30grpsubid 17499 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  ( m  .x.  U )  e.  B )  -> 
( ( m  .x.  U ) ( -g `  W ) ( m 
.x.  U ) )  =  .0.  )
5414, 29, 53syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( m  .x.  U ) ( -g `  W ) ( m 
.x.  U ) )  =  .0.  )
55 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( m  .x.  U
)  .<  X )
56 archiabllem.t . . . . . . . . . . 11  |-  .<  =  ( lt `  W )
576, 56, 30ogrpsublt 29722 . . . . . . . . . 10  |-  ( ( W  e. oGrp  /\  (
( m  .x.  U
)  e.  B  /\  X  e.  B  /\  ( m  .x.  U )  e.  B )  /\  ( m  .x.  U ) 
.<  X )  ->  (
( m  .x.  U
) ( -g `  W
) ( m  .x.  U ) )  .< 
( X ( -g `  W ) ( m 
.x.  U ) ) )
5812, 29, 27, 29, 55, 57syl131anc 1339 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( m  .x.  U ) ( -g `  W ) ( m 
.x.  U ) ) 
.<  ( X ( -g `  W ) ( m 
.x.  U ) ) )
5954, 58eqbrtrrd 4677 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  .0.  .<  ( X (
-g `  W )
( m  .x.  U
) ) )
60 breq2 4657 . . . . . . . . . 10  |-  ( x  =  ( X (
-g `  W )
( m  .x.  U
) )  ->  (  .0.  .<  x  <->  .0.  .<  ( X ( -g `  W
) ( m  .x.  U ) ) ) )
61 breq2 4657 . . . . . . . . . 10  |-  ( x  =  ( X (
-g `  W )
( m  .x.  U
) )  ->  ( U  .<_  x  <->  U  .<_  ( X ( -g `  W
) ( m  .x.  U ) ) ) )
6260, 61imbi12d 334 . . . . . . . . 9  |-  ( x  =  ( X (
-g `  W )
( m  .x.  U
) )  ->  (
(  .0.  .<  x  ->  U  .<_  x )  <->  (  .0.  .<  ( X
( -g `  W ) ( m  .x.  U
) )  ->  U  .<_  ( X ( -g `  W ) ( m 
.x.  U ) ) ) ) )
6362rspcv 3305 . . . . . . . 8  |-  ( ( X ( -g `  W
) ( m  .x.  U ) )  e.  B  ->  ( A. x  e.  B  (  .0.  .<  x  ->  U  .<_  x )  ->  (  .0.  .<  ( X (
-g `  W )
( m  .x.  U
) )  ->  U  .<_  ( X ( -g `  W ) ( m 
.x.  U ) ) ) ) )
6432, 51, 59, 63syl3c 66 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  U  .<_  ( X (
-g `  W )
( m  .x.  U
) ) )
656, 37posasymb 16952 . . . . . . . 8  |-  ( ( W  e.  Poset  /\  ( X ( -g `  W
) ( m  .x.  U ) )  e.  B  /\  U  e.  B )  ->  (
( ( X (
-g `  W )
( m  .x.  U
) )  .<_  U  /\  U  .<_  ( X (
-g `  W )
( m  .x.  U
) ) )  <->  ( X
( -g `  W ) ( m  .x.  U
) )  =  U ) )
6665biimpa 501 . . . . . . 7  |-  ( ( ( W  e.  Poset  /\  ( X ( -g `  W ) ( m 
.x.  U ) )  e.  B  /\  U  e.  B )  /\  (
( X ( -g `  W ) ( m 
.x.  U ) ) 
.<_  U  /\  U  .<_  ( X ( -g `  W
) ( m  .x.  U ) ) ) )  ->  ( X
( -g `  W ) ( m  .x.  U
) )  =  U )
6725, 32, 5, 47, 64, 66syl32anc 1334 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( X ( -g `  W ) ( m 
.x.  U ) )  =  U )
6867oveq1d 6665 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( X (
-g `  W )
( m  .x.  U
) ) ( +g  `  W ) ( m 
.x.  U ) )  =  ( U ( +g  `  W ) ( m  .x.  U
) ) )
6910, 19, 683eqtr4rd 2667 . . . 4  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( X (
-g `  W )
( m  .x.  U
) ) ( +g  `  W ) ( m 
.x.  U ) )  =  ( ( 1  +  m )  .x.  U ) )
706, 17, 30grpnpcan 17507 . . . . 5  |-  ( ( W  e.  Grp  /\  X  e.  B  /\  ( m  .x.  U )  e.  B )  -> 
( ( X (
-g `  W )
( m  .x.  U
) ) ( +g  `  W ) ( m 
.x.  U ) )  =  X )
7114, 27, 29, 70syl3anc 1326 . . . 4  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( X (
-g `  W )
( m  .x.  U
) ) ( +g  `  W ) ( m 
.x.  U ) )  =  X )
7241, 40addcomd 10238 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( 1  +  m
)  =  ( m  +  1 ) )
7372oveq1d 6665 . . . 4  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  -> 
( ( 1  +  m )  .x.  U
)  =  ( ( m  +  1 ) 
.x.  U ) )
7469, 71, 733eqtr3d 2664 . . 3  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  X  =  ( (
m  +  1 ) 
.x.  U ) )
75 oveq1 6657 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  U )  =  ( ( m  +  1 )  .x.  U ) )
7675eqeq2d 2632 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  ( X  =  ( n  .x.  U )  <->  X  =  ( ( m  + 
1 )  .x.  U
) ) )
7776rspcev 3309 . . 3  |-  ( ( ( m  +  1 )  e.  NN  /\  X  =  ( (
m  +  1 ) 
.x.  U ) )  ->  E. n  e.  NN  X  =  ( n  .x.  U ) )
783, 74, 77syl2anc 693 . 2  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
( m  .x.  U
)  .<  X  /\  X  .<_  ( ( m  + 
1 )  .x.  U
) ) )  ->  E. n  e.  NN  X  =  ( n  .x.  U ) )
79 archiabllem.a . . 3  |-  ( ph  ->  W  e. Archi )
80 archiabllem1.p . . 3  |-  ( ph  ->  .0.  .<  U )
81 archiabllem1a.c . . 3  |-  ( ph  ->  .0.  .<  X )
826, 52, 56, 37, 7, 11, 79, 4, 26, 80, 81archirng 29742 . 2  |-  ( ph  ->  E. m  e.  NN0  ( ( m  .x.  U )  .<  X  /\  X  .<_  ( ( m  +  1 )  .x.  U ) ) )
8378, 82r19.29a 3078 1  |-  ( ph  ->  E. n  e.  NN  X  =  ( n  .x.  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   Basecbs 15857   +g cplusg 15941   lecple 15948   0gc0g 16100   Posetcpo 16940   ltcplt 16941  Tosetctos 17033   Grpcgrp 17422   -gcsg 17424  .gcmg 17540  oMndcomnd 29697  oGrpcogrp 29698  Archicarchi 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-omnd 29699  df-ogrp 29700  df-inftm 29732  df-archi 29733
This theorem is referenced by:  archiabllem1b  29746
  Copyright terms: Public domain W3C validator