Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddlt Structured version   Visualization version   Unicode version

Theorem ogrpaddlt 29718
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0  |-  B  =  ( Base `  G
)
ogrpaddlt.1  |-  .<  =  ( lt `  G )
ogrpaddlt.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ogrpaddlt  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  ( X  .+  Z )  .<  ( Y  .+  Z ) )

Proof of Theorem ogrpaddlt
StepHypRef Expression
1 isogrp 29702 . . . . 5  |-  ( G  e. oGrp 
<->  ( G  e.  Grp  /\  G  e. oMnd ) )
21simprbi 480 . . . 4  |-  ( G  e. oGrp  ->  G  e. oMnd )
323ad2ant1 1082 . . 3  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  G  e. oMnd )
4 simp2 1062 . . 3  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )
5 simp1 1061 . . . 4  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  G  e. oGrp )
6 simp21 1094 . . . 4  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  X  e.  B
)
7 simp22 1095 . . . 4  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  Y  e.  B
)
8 simp3 1063 . . . 4  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  X  .<  Y )
9 eqid 2622 . . . . . 6  |-  ( le
`  G )  =  ( le `  G
)
10 ogrpaddlt.1 . . . . . 6  |-  .<  =  ( lt `  G )
119, 10pltle 16961 . . . . 5  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X
( le `  G
) Y ) )
1211imp 445 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X ( le
`  G ) Y )
135, 6, 7, 8, 12syl31anc 1329 . . 3  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  X ( le
`  G ) Y )
14 ogrpaddlt.0 . . . 4  |-  B  =  ( Base `  G
)
15 ogrpaddlt.2 . . . 4  |-  .+  =  ( +g  `  G )
1614, 9, 15omndadd 29706 . . 3  |-  ( ( G  e. oMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X ( le `  G ) Y )  ->  ( X  .+  Z ) ( le
`  G ) ( Y  .+  Z ) )
173, 4, 13, 16syl3anc 1326 . 2  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  ( X  .+  Z ) ( le
`  G ) ( Y  .+  Z ) )
1810pltne 16962 . . . . 5  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X  =/=  Y ) )
1918imp 445 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X  =/=  Y
)
205, 6, 7, 8, 19syl31anc 1329 . . 3  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  X  =/=  Y
)
21 ogrpgrp 29703 . . . . . 6  |-  ( G  e. oGrp  ->  G  e.  Grp )
2214, 15grprcan 17455 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  <->  X  =  Y ) )
2322biimpd 219 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  ->  X  =  Y )
)
2421, 23sylan 488 . . . . 5  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Z )  =  ( Y  .+  Z
)  ->  X  =  Y ) )
2524necon3d 2815 . . . 4  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  =/=  Y  ->  ( X  .+  Z )  =/=  ( Y  .+  Z ) ) )
26253impia 1261 . . 3  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  =/=  Y
)  ->  ( X  .+  Z )  =/=  ( Y  .+  Z ) )
275, 4, 20, 26syl3anc 1326 . 2  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  ( X  .+  Z )  =/=  ( Y  .+  Z ) )
28 ovex 6678 . . . 4  |-  ( X 
.+  Z )  e. 
_V
29 ovex 6678 . . . 4  |-  ( Y 
.+  Z )  e. 
_V
309, 10pltval 16960 . . . 4  |-  ( ( G  e. oGrp  /\  ( X  .+  Z )  e. 
_V  /\  ( Y  .+  Z )  e.  _V )  ->  ( ( X 
.+  Z )  .< 
( Y  .+  Z
)  <->  ( ( X 
.+  Z ) ( le `  G ) ( Y  .+  Z
)  /\  ( X  .+  Z )  =/=  ( Y  .+  Z ) ) ) )
3128, 29, 30mp3an23 1416 . . 3  |-  ( G  e. oGrp  ->  ( ( X 
.+  Z )  .< 
( Y  .+  Z
)  <->  ( ( X 
.+  Z ) ( le `  G ) ( Y  .+  Z
)  /\  ( X  .+  Z )  =/=  ( Y  .+  Z ) ) ) )
32313ad2ant1 1082 . 2  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  ( ( X 
.+  Z )  .< 
( Y  .+  Z
)  <->  ( ( X 
.+  Z ) ( le `  G ) ( Y  .+  Z
)  /\  ( X  .+  Z )  =/=  ( Y  .+  Z ) ) ) )
3317, 27, 32mpbir2and 957 1  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  ( X  .+  Z )  .<  ( Y  .+  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   lecple 15948   ltcplt 16941   Grpcgrp 17422  oMndcomnd 29697  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-omnd 29699  df-ogrp 29700
This theorem is referenced by:  ogrpaddltbi  29719  ogrpaddltrd  29720  ogrpinv0lt  29723  isarchi3  29741  archirngz  29743  archiabllem1b  29746  archiabllem2c  29749  ofldchr  29814
  Copyright terms: Public domain W3C validator