MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnextcn Structured version   Visualization version   Unicode version

Theorem ucnextcn 22108
Description: Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set  X, a subset  A dense in  X, and a function  F uniformly continuous from  A to  Y, that function can be extended by continuity to the whole  X, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Hypotheses
Ref Expression
ucnextcn.x  |-  X  =  ( Base `  V
)
ucnextcn.y  |-  Y  =  ( Base `  W
)
ucnextcn.j  |-  J  =  ( TopOpen `  V )
ucnextcn.k  |-  K  =  ( TopOpen `  W )
ucnextcn.s  |-  S  =  (UnifSt `  V )
ucnextcn.t  |-  T  =  (UnifSt `  ( Vs  A
) )
ucnextcn.u  |-  U  =  (UnifSt `  W )
ucnextcn.v  |-  ( ph  ->  V  e.  TopSp )
ucnextcn.r  |-  ( ph  ->  V  e. UnifSp )
ucnextcn.w  |-  ( ph  ->  W  e.  TopSp )
ucnextcn.z  |-  ( ph  ->  W  e. CUnifSp )
ucnextcn.h  |-  ( ph  ->  K  e.  Haus )
ucnextcn.a  |-  ( ph  ->  A  C_  X )
ucnextcn.f  |-  ( ph  ->  F  e.  ( T Cnu U ) )
ucnextcn.c  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  X )
Assertion
Ref Expression
ucnextcn  |-  ( ph  ->  ( ( JCnExt K
) `  F )  e.  ( J  Cn  K
) )

Proof of Theorem ucnextcn
Dummy variables  a 
b  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnextcn.x . 2  |-  X  =  ( Base `  V
)
2 ucnextcn.y . 2  |-  Y  =  ( Base `  W
)
3 ucnextcn.j . 2  |-  J  =  ( TopOpen `  V )
4 ucnextcn.k . 2  |-  K  =  ( TopOpen `  W )
5 ucnextcn.u . 2  |-  U  =  (UnifSt `  W )
6 ucnextcn.v . 2  |-  ( ph  ->  V  e.  TopSp )
7 ucnextcn.w . 2  |-  ( ph  ->  W  e.  TopSp )
8 ucnextcn.z . 2  |-  ( ph  ->  W  e. CUnifSp )
9 ucnextcn.h . 2  |-  ( ph  ->  K  e.  Haus )
10 ucnextcn.a . 2  |-  ( ph  ->  A  C_  X )
11 ucnextcn.f . . . 4  |-  ( ph  ->  F  e.  ( T Cnu U ) )
12 ucnextcn.r . . . . . 6  |-  ( ph  ->  V  e. UnifSp )
13 ucnextcn.t . . . . . . 7  |-  T  =  (UnifSt `  ( Vs  A
) )
141, 13ressust 22068 . . . . . 6  |-  ( ( V  e. UnifSp  /\  A  C_  X )  ->  T  e.  (UnifOn `  A )
)
1512, 10, 14syl2anc 693 . . . . 5  |-  ( ph  ->  T  e.  (UnifOn `  A ) )
16 cuspusp 22104 . . . . . . . 8  |-  ( W  e. CUnifSp  ->  W  e. UnifSp )
178, 16syl 17 . . . . . . 7  |-  ( ph  ->  W  e. UnifSp )
182, 5, 4isusp 22065 . . . . . . 7  |-  ( W  e. UnifSp 
<->  ( U  e.  (UnifOn `  Y )  /\  K  =  (unifTop `  U )
) )
1917, 18sylib 208 . . . . . 6  |-  ( ph  ->  ( U  e.  (UnifOn `  Y )  /\  K  =  (unifTop `  U )
) )
2019simpld 475 . . . . 5  |-  ( ph  ->  U  e.  (UnifOn `  Y ) )
21 isucn 22082 . . . . 5  |-  ( ( T  e.  (UnifOn `  A )  /\  U  e.  (UnifOn `  Y )
)  ->  ( F  e.  ( T Cnu U )  <->  ( F : A --> Y  /\  A. w  e.  U  E. v  e.  T  A. y  e.  A  A. z  e.  A  (
y v z  -> 
( F `  y
) w ( F `
 z ) ) ) ) )
2215, 20, 21syl2anc 693 . . . 4  |-  ( ph  ->  ( F  e.  ( T Cnu U )  <->  ( F : A --> Y  /\  A. w  e.  U  E. v  e.  T  A. y  e.  A  A. z  e.  A  (
y v z  -> 
( F `  y
) w ( F `
 z ) ) ) ) )
2311, 22mpbid 222 . . 3  |-  ( ph  ->  ( F : A --> Y  /\  A. w  e.  U  E. v  e.  T  A. y  e.  A  A. z  e.  A  ( y v z  ->  ( F `  y ) w ( F `  z ) ) ) )
2423simpld 475 . 2  |-  ( ph  ->  F : A --> Y )
25 ucnextcn.c . 2  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  X )
2620adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  U  e.  (UnifOn `  Y )
)
2726elfvexd 6222 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  Y  e.  _V )
28 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
2925adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
( cls `  J
) `  A )  =  X )
3028, 29eleqtrrd 2704 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  ( ( cls `  J
) `  A )
)
311, 3istps 20738 . . . . . . . . 9  |-  ( V  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
326, 31sylib 208 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3332adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  J  e.  (TopOn `  X )
)
3410adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  A  C_  X )
35 trnei 21696 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  x  e.  X )  ->  (
x  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) ) )
3633, 34, 28, 35syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) ) )
3730, 36mpbid 222 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) )
38 filfbas 21652 . . . . 5  |-  ( ( ( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A )  ->  ( ( ( nei `  J ) `
 { x }
)t 
A )  e.  (
fBas `  A )
)
3937, 38syl 17 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( nei `  J
) `  { x } )t  A )  e.  (
fBas `  A )
)
4024adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  F : A --> Y )
41 fmval 21747 . . . 4  |-  ( ( Y  e.  _V  /\  ( ( ( nei `  J ) `  {
x } )t  A )  e.  ( fBas `  A
)  /\  F : A
--> Y )  ->  (
( Y  FilMap  F ) `
 ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( Y filGen ran  (
a  e.  ( ( ( nei `  J
) `  { x } )t  A )  |->  ( F
" a ) ) ) )
4227, 39, 40, 41syl3anc 1326 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( Y  FilMap  F ) `
 ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( Y filGen ran  (
a  e.  ( ( ( nei `  J
) `  { x } )t  A )  |->  ( F
" a ) ) ) )
4315adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  T  e.  (UnifOn `  A )
)
4411adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  F  e.  ( T Cnu U ) )
45 ucnextcn.s . . . . . . . . . . 11  |-  S  =  (UnifSt `  V )
461, 45, 3isusp 22065 . . . . . . . . . 10  |-  ( V  e. UnifSp 
<->  ( S  e.  (UnifOn `  X )  /\  J  =  (unifTop `  S )
) )
4712, 46sylib 208 . . . . . . . . 9  |-  ( ph  ->  ( S  e.  (UnifOn `  X )  /\  J  =  (unifTop `  S )
) )
4847simpld 475 . . . . . . . 8  |-  ( ph  ->  S  e.  (UnifOn `  X ) )
4948adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  (UnifOn `  X )
)
5012adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  V  e. UnifSp )
516adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  V  e.  TopSp )
521, 3, 45neipcfilu 22100 . . . . . . . 8  |-  ( ( V  e. UnifSp  /\  V  e. 
TopSp  /\  x  e.  X
)  ->  ( ( nei `  J ) `  { x } )  e.  (CauFilu `  S ) )
5350, 51, 28, 52syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
( nei `  J
) `  { x } )  e.  (CauFilu `  S ) )
54 0nelfb 21635 . . . . . . . 8  |-  ( ( ( ( nei `  J
) `  { x } )t  A )  e.  (
fBas `  A )  ->  -.  (/)  e.  ( ( ( nei `  J
) `  { x } )t  A ) )
5539, 54syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  -.  (/) 
e.  ( ( ( nei `  J ) `
 { x }
)t 
A ) )
56 trcfilu 22098 . . . . . . 7  |-  ( ( S  e.  (UnifOn `  X )  /\  (
( ( nei `  J
) `  { x } )  e.  (CauFilu `  S )  /\  -.  (/) 
e.  ( ( ( nei `  J ) `
 { x }
)t 
A ) )  /\  A  C_  X )  -> 
( ( ( nei `  J ) `  {
x } )t  A )  e.  (CauFilu `  ( St  ( A  X.  A ) ) ) )
5749, 53, 55, 34, 56syl121anc 1331 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( nei `  J
) `  { x } )t  A )  e.  (CauFilu `  ( St  ( A  X.  A ) ) ) )
5843elfvexd 6222 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  _V )
59 ressuss 22067 . . . . . . . . 9  |-  ( A  e.  _V  ->  (UnifSt `  ( Vs  A ) )  =  ( (UnifSt `  V
)t  ( A  X.  A
) ) )
6045oveq1i 6660 . . . . . . . . 9  |-  ( St  ( A  X.  A ) )  =  ( (UnifSt `  V )t  ( A  X.  A ) )
6159, 13, 603eqtr4g 2681 . . . . . . . 8  |-  ( A  e.  _V  ->  T  =  ( St  ( A  X.  A ) ) )
6261fveq2d 6195 . . . . . . 7  |-  ( A  e.  _V  ->  (CauFilu `  T )  =  (CauFilu `  ( St  ( A  X.  A ) ) ) )
6358, 62syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (CauFilu `  T )  =  (CauFilu `  ( St  ( A  X.  A ) ) ) )
6457, 63eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( nei `  J
) `  { x } )t  A )  e.  (CauFilu `  T ) )
65 imaeq2 5462 . . . . . . 7  |-  ( a  =  b  ->  ( F " a )  =  ( F " b
) )
6665cbvmptv 4750 . . . . . 6  |-  ( a  e.  ( ( ( nei `  J ) `
 { x }
)t 
A )  |->  ( F
" a ) )  =  ( b  e.  ( ( ( nei `  J ) `  {
x } )t  A ) 
|->  ( F " b
) )
6766rneqi 5352 . . . . 5  |-  ran  (
a  e.  ( ( ( nei `  J
) `  { x } )t  A )  |->  ( F
" a ) )  =  ran  ( b  e.  ( ( ( nei `  J ) `
 { x }
)t 
A )  |->  ( F
" b ) )
6843, 26, 44, 64, 67fmucnd 22096 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ran  ( a  e.  ( ( ( nei `  J
) `  { x } )t  A )  |->  ( F
" a ) )  e.  (CauFilu `  U ) )
69 cfilufg 22097 . . . 4  |-  ( ( U  e.  (UnifOn `  Y )  /\  ran  ( a  e.  ( ( ( nei `  J
) `  { x } )t  A )  |->  ( F
" a ) )  e.  (CauFilu `  U ) )  ->  ( Y filGen ran  ( a  e.  ( ( ( nei `  J
) `  { x } )t  A )  |->  ( F
" a ) ) )  e.  (CauFilu `  U
) )
7026, 68, 69syl2anc 693 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( Y filGen ran  ( a  e.  ( ( ( nei `  J ) `  {
x } )t  A ) 
|->  ( F " a
) ) )  e.  (CauFilu `  U ) )
7142, 70eqeltrd 2701 . 2  |-  ( (
ph  /\  x  e.  X )  ->  (
( Y  FilMap  F ) `
 ( ( ( nei `  J ) `
 { x }
)t 
A ) )  e.  (CauFilu `  U ) )
721, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 71cnextucn 22107 1  |-  ( ph  ->  ( ( JCnExt K
) `  F )  e.  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   ↾t crest 16081   TopOpenctopn 16082   fBascfbas 19734   filGencfg 19735  TopOnctopon 20715   TopSpctps 20736   clsccl 20822   neicnei 20901    Cn ccn 21028   Hauscha 21112   Filcfil 21649    FilMap cfm 21737  CnExtccnext 21863  UnifOncust 22003  unifTopcutop 22034  UnifStcuss 22057  UnifSpcusp 22058   Cnucucn 22079  CauFiluccfilu 22090  CUnifSpccusp 22101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-unif 15965  df-rest 16083  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-haus 21119  df-reg 21120  df-tx 21365  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cnext 21864  df-ust 22004  df-utop 22035  df-uss 22060  df-usp 22061  df-ucn 22080  df-cfilu 22091  df-cusp 22102
This theorem is referenced by:  rrhcn  30041
  Copyright terms: Public domain W3C validator