MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq1 Structured version   Visualization version   Unicode version

Theorem ixpeq1 7919
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq1  |-  ( A  =  B  ->  X_ x  e.  A  C  =  X_ x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem ixpeq1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq2 5980 . . . 4  |-  ( A  =  B  ->  (
f  Fn  A  <->  f  Fn  B ) )
2 raleq 3138 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  A  ( f `  x
)  e.  C  <->  A. x  e.  B  ( f `  x )  e.  C
) )
31, 2anbi12d 747 . . 3  |-  ( A  =  B  ->  (
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C )  <-> 
( f  Fn  B  /\  A. x  e.  B  ( f `  x
)  e.  C ) ) )
43abbidv 2741 . 2  |-  ( A  =  B  ->  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) }  =  {
f  |  ( f  Fn  B  /\  A. x  e.  B  (
f `  x )  e.  C ) } )
5 dfixp 7910 . 2  |-  X_ x  e.  A  C  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C ) }
6 dfixp 7910 . 2  |-  X_ x  e.  B  C  =  { f  |  ( f  Fn  B  /\  A. x  e.  B  ( f `  x )  e.  C ) }
74, 5, 63eqtr4g 2681 1  |-  ( A  =  B  ->  X_ x  e.  A  C  =  X_ x  e.  B  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912    Fn wfn 5883   ` cfv 5888   X_cixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-fn 5891  df-ixp 7909
This theorem is referenced by:  ixpeq1d  7920  finixpnum  33394  ioorrnopn  40525  ioorrnopnxr  40527  ovnval  40755  hoicvr  40762  hoidmv1le  40808  hoidmvle  40814  ovnhoi  40817  hspval  40823  ovnlecvr2  40824  hoiqssbl  40839  vonhoire  40886  iunhoiioo  40890  vonioo  40896  vonicc  40899
  Copyright terms: Public domain W3C validator