Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioo Structured version   Visualization version   Unicode version

Theorem iunhoiioo 40890
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioo.k  |-  F/ k
ph
iunhoiioo.x  |-  ( ph  ->  X  e.  Fin )
iunhoiioo.a  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR )
iunhoiioo.b  |-  ( (
ph  /\  k  e.  X )  ->  B  e.  RR* )
Assertion
Ref Expression
iunhoiioo  |-  ( ph  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B )  =  X_ k  e.  X  ( A (,) B ) )
Distinct variable groups:    A, n    B, n    k, X, n    ph, n
Allowed substitution hints:    ph( k)    A( k)    B( k)

Proof of Theorem iunhoiioo
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 nnn0 39595 . . . . . 6  |-  NN  =/=  (/)
2 iunconst 4529 . . . . . 6  |-  ( NN  =/=  (/)  ->  U_ n  e.  NN  { (/) }  =  { (/) } )
31, 2ax-mp 5 . . . . 5  |-  U_ n  e.  NN  { (/) }  =  { (/) }
43a1i 11 . . . 4  |-  ( X  =  (/)  ->  U_ n  e.  NN  { (/) }  =  { (/) } )
5 ixpeq1 7919 . . . . . . 7  |-  ( X  =  (/)  ->  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B )  = 
X_ k  e.  (/)  ( ( A  +  ( 1  /  n
) ) [,) B
) )
6 ixp0x 7936 . . . . . . . 8  |-  X_ k  e.  (/)  ( ( A  +  ( 1  /  n ) ) [,) B )  =  { (/)
}
76a1i 11 . . . . . . 7  |-  ( X  =  (/)  ->  X_ k  e.  (/)  ( ( A  +  ( 1  /  n ) ) [,) B )  =  { (/)
} )
85, 7eqtrd 2656 . . . . . 6  |-  ( X  =  (/)  ->  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B )  =  { (/) } )
98adantr 481 . . . . 5  |-  ( ( X  =  (/)  /\  n  e.  NN )  ->  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B )  =  { (/) } )
109iuneq2dv 4542 . . . 4  |-  ( X  =  (/)  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
)  =  U_ n  e.  NN  { (/) } )
11 ixpeq1 7919 . . . . 5  |-  ( X  =  (/)  ->  X_ k  e.  X  ( A (,) B )  =  X_ k  e.  (/)  ( A (,) B ) )
12 ixp0x 7936 . . . . . 6  |-  X_ k  e.  (/)  ( A (,) B )  =  { (/)
}
1312a1i 11 . . . . 5  |-  ( X  =  (/)  ->  X_ k  e.  (/)  ( A (,) B )  =  { (/)
} )
1411, 13eqtrd 2656 . . . 4  |-  ( X  =  (/)  ->  X_ k  e.  X  ( A (,) B )  =  { (/)
} )
154, 10, 143eqtr4d 2666 . . 3  |-  ( X  =  (/)  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
)  =  X_ k  e.  X  ( A (,) B ) )
1615adantl 482 . 2  |-  ( (
ph  /\  X  =  (/) )  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
)  =  X_ k  e.  X  ( A (,) B ) )
17 iunhoiioo.k . . . . . . . 8  |-  F/ k
ph
18 nfv 1843 . . . . . . . 8  |-  F/ k  n  e.  NN
1917, 18nfan 1828 . . . . . . 7  |-  F/ k ( ph  /\  n  e.  NN )
20 iunhoiioo.a . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR )
2120rexrd 10089 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR* )
2221adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  A  e.  RR* )
23 iunhoiioo.b . . . . . . . . 9  |-  ( (
ph  /\  k  e.  X )  ->  B  e.  RR* )
2423adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  B  e.  RR* )
2520adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  A  e.  RR )
26 nnrp 11842 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  n  e.  RR+ )
2726ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  n  e.  RR+ )
2827rpreccld 11882 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  (
1  /  n )  e.  RR+ )
2925, 28ltaddrpd 11905 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  A  <  ( A  +  ( 1  /  n ) ) )
30 xrleid 11983 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  B  <_  B )
3123, 30syl 17 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  X )  ->  B  <_  B )
3231adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  B  <_  B )
33 icossioo 12264 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <  ( A  +  ( 1  /  n ) )  /\  B  <_  B
) )  ->  (
( A  +  ( 1  /  n ) ) [,) B ) 
C_  ( A (,) B ) )
3422, 24, 29, 32, 33syl22anc 1327 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  (
( A  +  ( 1  /  n ) ) [,) B ) 
C_  ( A (,) B ) )
3519, 34ixpssixp 39269 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B )  C_  X_ k  e.  X  ( A (,) B ) )
3635ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B ) 
C_  X_ k  e.  X  ( A (,) B ) )
37 iunss 4561 . . . . 5  |-  ( U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B )  C_  X_ k  e.  X  ( A (,) B )  <->  A. n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B ) 
C_  X_ k  e.  X  ( A (,) B ) )
3836, 37sylibr 224 . . . 4  |-  ( ph  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B ) 
C_  X_ k  e.  X  ( A (,) B ) )
3938adantr 481 . . 3  |-  ( (
ph  /\  -.  X  =  (/) )  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
)  C_  X_ k  e.  X  ( A (,) B ) )
40 nfv 1843 . . . . . . . 8  |-  F/ k  -.  X  =  (/)
4117, 40nfan 1828 . . . . . . 7  |-  F/ k ( ph  /\  -.  X  =  (/) )
42 nfcv 2764 . . . . . . . 8  |-  F/_ k
f
43 nfixp1 7928 . . . . . . . 8  |-  F/_ k X_ k  e.  X  ( A (,) B )
4442, 43nfel 2777 . . . . . . 7  |-  F/ k  f  e.  X_ k  e.  X  ( A (,) B )
4541, 44nfan 1828 . . . . . 6  |-  F/ k ( ( ph  /\  -.  X  =  (/) )  /\  f  e.  X_ k  e.  X  ( A (,) B ) )
46 iunhoiioo.x . . . . . . 7  |-  ( ph  ->  X  e.  Fin )
4746ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  -.  X  =  (/) )  /\  f  e.  X_ k  e.  X  ( A (,) B ) )  ->  X  e.  Fin )
48 neqne 2802 . . . . . . 7  |-  ( -.  X  =  (/)  ->  X  =/=  (/) )
4948ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  -.  X  =  (/) )  /\  f  e.  X_ k  e.  X  ( A (,) B ) )  ->  X  =/=  (/) )
5020ad4ant14 1293 . . . . . 6  |-  ( ( ( ( ph  /\  -.  X  =  (/) )  /\  f  e.  X_ k  e.  X  ( A (,) B ) )  /\  k  e.  X )  ->  A  e.  RR )
5123ad4ant14 1293 . . . . . 6  |-  ( ( ( ( ph  /\  -.  X  =  (/) )  /\  f  e.  X_ k  e.  X  ( A (,) B ) )  /\  k  e.  X )  ->  B  e.  RR* )
52 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  -.  X  =  (/) )  /\  f  e.  X_ k  e.  X  ( A (,) B ) )  -> 
f  e.  X_ k  e.  X  ( A (,) B ) )
53 eqid 2622 . . . . . 6  |- inf ( ran  ( k  e.  X  |->  ( ( f `  k )  -  A
) ) ,  RR ,  <  )  = inf ( ran  ( k  e.  X  |->  ( ( f `  k )  -  A
) ) ,  RR ,  <  )
5445, 47, 49, 50, 51, 52, 53iunhoiioolem 40889 . . . . 5  |-  ( ( ( ph  /\  -.  X  =  (/) )  /\  f  e.  X_ k  e.  X  ( A (,) B ) )  -> 
f  e.  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
) )
5554ralrimiva 2966 . . . 4  |-  ( (
ph  /\  -.  X  =  (/) )  ->  A. f  e.  X_  k  e.  X  ( A (,) B ) f  e.  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
) )
56 dfss3 3592 . . . 4  |-  ( X_ k  e.  X  ( A (,) B )  C_  U_ n  e.  NN  X_ k  e.  X  (
( A  +  ( 1  /  n ) ) [,) B )  <->  A. f  e.  X_  k  e.  X  ( A (,) B ) f  e. 
U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B ) )
5755, 56sylibr 224 . . 3  |-  ( (
ph  /\  -.  X  =  (/) )  ->  X_ k  e.  X  ( A (,) B )  C_  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
) )
5839, 57eqssd 3620 . 2  |-  ( (
ph  /\  -.  X  =  (/) )  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n
) ) [,) B
)  =  X_ k  e.  X  ( A (,) B ) )
5916, 58pm2.61dan 832 1  |-  ( ph  ->  U_ n  e.  NN  X_ k  e.  X  ( ( A  +  ( 1  /  n ) ) [,) B )  =  X_ k  e.  X  ( A (,) B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   X_cixp 7908   Fincfn 7955  infcinf 8347   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   RR+crp 11832   (,)cioo 12175   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593
This theorem is referenced by:  vonioolem2  40895
  Copyright terms: Public domain W3C validator