MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcld Structured version   Visualization version   Unicode version

Theorem kqcld 21538
Description: The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqcld  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( F " U )  e.  ( Clsd `  (KQ `  J ) ) )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    U( x, y)    F( x, y)

Proof of Theorem kqcld
StepHypRef Expression
1 imassrn 5477 . . . 4  |-  ( F
" U )  C_  ran  F
21a1i 11 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( F " U )  C_  ran  F )
3 kqval.2 . . . . 5  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
43kqcldsat 21536 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) )  =  U )
5 simpr 477 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  e.  ( Clsd `  J
) )
64, 5eqeltrd 2701 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) )  e.  ( Clsd `  J
) )
73kqffn 21528 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
8 dffn4 6121 . . . . . 6  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
97, 8sylib 208 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  F : X -onto-> ran  F )
10 qtopcld 21516 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( ( F " U )  e.  (
Clsd `  ( J qTop  F ) )  <->  ( ( F " U )  C_  ran  F  /\  ( `' F " ( F
" U ) )  e.  ( Clsd `  J
) ) ) )
119, 10mpdan 702 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( ( F " U )  e.  ( Clsd `  ( J qTop  F ) )  <->  ( ( F " U )  C_  ran  F  /\  ( `' F " ( F
" U ) )  e.  ( Clsd `  J
) ) ) )
1211adantr 481 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (
( F " U
)  e.  ( Clsd `  ( J qTop  F ) )  <->  ( ( F
" U )  C_  ran  F  /\  ( `' F " ( F
" U ) )  e.  ( Clsd `  J
) ) ) )
132, 6, 12mpbir2and 957 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( F " U )  e.  ( Clsd `  ( J qTop  F ) ) )
143kqval 21529 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  =  ( J qTop 
F ) )
1514adantr 481 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (KQ `  J )  =  ( J qTop  F ) )
1615fveq2d 6195 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( Clsd `  (KQ `  J
) )  =  (
Clsd `  ( J qTop  F ) ) )
1713, 16eleqtrrd 2704 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( F " U )  e.  ( Clsd `  (KQ `  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163  TopOnctopon 20715   Clsdccld 20820  KQckq 21496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167  df-top 20699  df-topon 20716  df-cld 20823  df-kq 21497
This theorem is referenced by:  kqreglem1  21544  kqnrmlem1  21546  kqnrmlem2  21547
  Copyright terms: Public domain W3C validator