MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmcom Structured version   Visualization version   Unicode version

Theorem lcmcom 15306
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcom  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( N lcm  M
) )

Proof of Theorem lcmcom
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 orcom 402 . . 3  |-  ( ( M  =  0  \/  N  =  0 )  <-> 
( N  =  0  \/  M  =  0 ) )
2 ancom 466 . . . . . 6  |-  ( ( M  ||  n  /\  N  ||  n )  <->  ( N  ||  n  /\  M  ||  n ) )
32a1i 11 . . . . 5  |-  ( n  e.  NN  ->  (
( M  ||  n  /\  N  ||  n )  <-> 
( N  ||  n  /\  M  ||  n ) ) )
43rabbiia 3185 . . . 4  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  NN  |  ( N  ||  n  /\  M  ||  n
) }
54infeq1i 8384 . . 3  |- inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( N  ||  n  /\  M  ||  n ) } ,  RR ,  <  )
61, 5ifbieq2i 4110 . 2  |-  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  \/  M  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( N  ||  n  /\  M  ||  n
) } ,  RR ,  <  ) )
7 lcmval 15305 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
8 lcmval 15305 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N lcm  M )  =  if ( ( N  =  0  \/  M  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( N  ||  n  /\  M  ||  n
) } ,  RR ,  <  ) ) )
98ancoms 469 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N lcm  M )  =  if ( ( N  =  0  \/  M  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( N  ||  n  /\  M  ||  n
) } ,  RR ,  <  ) ) )
106, 7, 93eqtr4a 2682 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( N lcm  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   ifcif 4086   class class class wbr 4653  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936    < clt 10074   NNcn 11020   ZZcz 11377    || cdvds 14983   lcm clcm 15301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-lcm 15303
This theorem is referenced by:  dvdslcm  15311  lcmeq0  15313  lcmcl  15314  lcmneg  15316  neglcm  15317  lcmgcd  15320  lcmdvds  15321  lcmftp  15349  lcmfunsnlem2  15353  lcmfunsnlem  15354  lcmf2a3a4e12  15360
  Copyright terms: Public domain W3C validator