MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1i Structured version   Visualization version   Unicode version

Theorem ledivp1i 10949
Description: Less-than-or-equal-to and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1  |-  A  e.  RR
prodgt0.2  |-  B  e.  RR
ltmul1.3  |-  C  e.  RR
Assertion
Ref Expression
ledivp1i  |-  ( ( 0  <_  A  /\  0  <_  C  /\  A  <_  ( B  /  ( C  +  1 ) ) )  ->  ( A  x.  C )  <_  B )

Proof of Theorem ledivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4  |-  A  e.  RR
2 ltmul1.3 . . . . 5  |-  C  e.  RR
3 1re 10039 . . . . . 6  |-  1  e.  RR
42, 3readdcli 10053 . . . . 5  |-  ( C  +  1 )  e.  RR
52ltp1i 10927 . . . . . . 7  |-  C  < 
( C  +  1 )
62, 4, 5ltleii 10160 . . . . . 6  |-  C  <_ 
( C  +  1 )
7 lemul2a 10878 . . . . . 6  |-  ( ( ( C  e.  RR  /\  ( C  +  1 )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A )
)  /\  C  <_  ( C  +  1 ) )  ->  ( A  x.  C )  <_  ( A  x.  ( C  +  1 ) ) )
86, 7mpan2 707 . . . . 5  |-  ( ( C  e.  RR  /\  ( C  +  1
)  e.  RR  /\  ( A  e.  RR  /\  0  <_  A )
)  ->  ( A  x.  C )  <_  ( A  x.  ( C  +  1 ) ) )
92, 4, 8mp3an12 1414 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  x.  C
)  <_  ( A  x.  ( C  +  1 ) ) )
101, 9mpan 706 . . 3  |-  ( 0  <_  A  ->  ( A  x.  C )  <_  ( A  x.  ( C  +  1 ) ) )
11103ad2ant1 1082 . 2  |-  ( ( 0  <_  A  /\  0  <_  C  /\  A  <_  ( B  /  ( C  +  1 ) ) )  ->  ( A  x.  C )  <_  ( A  x.  ( C  +  1 ) ) )
12 0re 10040 . . . . . . . 8  |-  0  e.  RR
1312, 2, 4lelttri 10164 . . . . . . 7  |-  ( ( 0  <_  C  /\  C  <  ( C  + 
1 ) )  -> 
0  <  ( C  +  1 ) )
145, 13mpan2 707 . . . . . 6  |-  ( 0  <_  C  ->  0  <  ( C  +  1 ) )
154gt0ne0i 10563 . . . . . . . . 9  |-  ( 0  <  ( C  + 
1 )  ->  ( C  +  1 )  =/=  0 )
16 prodgt0.2 . . . . . . . . . 10  |-  B  e.  RR
1716, 4redivclzi 10791 . . . . . . . . 9  |-  ( ( C  +  1 )  =/=  0  ->  ( B  /  ( C  + 
1 ) )  e.  RR )
1815, 17syl 17 . . . . . . . 8  |-  ( 0  <  ( C  + 
1 )  ->  ( B  /  ( C  + 
1 ) )  e.  RR )
19 lemul1 10875 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( B  /  ( C  +  1 ) )  e.  RR  /\  ( ( C  + 
1 )  e.  RR  /\  0  <  ( C  +  1 ) ) )  ->  ( A  <_  ( B  /  ( C  +  1 ) )  <->  ( A  x.  ( C  +  1
) )  <_  (
( B  /  ( C  +  1 ) )  x.  ( C  +  1 ) ) ) )
201, 19mp3an1 1411 . . . . . . . . . 10  |-  ( ( ( B  /  ( C  +  1 ) )  e.  RR  /\  ( ( C  + 
1 )  e.  RR  /\  0  <  ( C  +  1 ) ) )  ->  ( A  <_  ( B  /  ( C  +  1 ) )  <->  ( A  x.  ( C  +  1
) )  <_  (
( B  /  ( C  +  1 ) )  x.  ( C  +  1 ) ) ) )
2120ex 450 . . . . . . . . 9  |-  ( ( B  /  ( C  +  1 ) )  e.  RR  ->  (
( ( C  + 
1 )  e.  RR  /\  0  <  ( C  +  1 ) )  ->  ( A  <_ 
( B  /  ( C  +  1 ) )  <->  ( A  x.  ( C  +  1
) )  <_  (
( B  /  ( C  +  1 ) )  x.  ( C  +  1 ) ) ) ) )
224, 21mpani 712 . . . . . . . 8  |-  ( ( B  /  ( C  +  1 ) )  e.  RR  ->  (
0  <  ( C  +  1 )  -> 
( A  <_  ( B  /  ( C  + 
1 ) )  <->  ( A  x.  ( C  +  1 ) )  <_  (
( B  /  ( C  +  1 ) )  x.  ( C  +  1 ) ) ) ) )
2318, 22mpcom 38 . . . . . . 7  |-  ( 0  <  ( C  + 
1 )  ->  ( A  <_  ( B  / 
( C  +  1 ) )  <->  ( A  x.  ( C  +  1 ) )  <_  (
( B  /  ( C  +  1 ) )  x.  ( C  +  1 ) ) ) )
2423biimpd 219 . . . . . 6  |-  ( 0  <  ( C  + 
1 )  ->  ( A  <_  ( B  / 
( C  +  1 ) )  ->  ( A  x.  ( C  +  1 ) )  <_  ( ( B  /  ( C  + 
1 ) )  x.  ( C  +  1 ) ) ) )
2514, 24syl 17 . . . . 5  |-  ( 0  <_  C  ->  ( A  <_  ( B  / 
( C  +  1 ) )  ->  ( A  x.  ( C  +  1 ) )  <_  ( ( B  /  ( C  + 
1 ) )  x.  ( C  +  1 ) ) ) )
2625imp 445 . . . 4  |-  ( ( 0  <_  C  /\  A  <_  ( B  / 
( C  +  1 ) ) )  -> 
( A  x.  ( C  +  1 ) )  <_  ( ( B  /  ( C  + 
1 ) )  x.  ( C  +  1 ) ) )
2716recni 10052 . . . . . . 7  |-  B  e.  CC
284recni 10052 . . . . . . 7  |-  ( C  +  1 )  e.  CC
2927, 28divcan1zi 10761 . . . . . 6  |-  ( ( C  +  1 )  =/=  0  ->  (
( B  /  ( C  +  1 ) )  x.  ( C  +  1 ) )  =  B )
3014, 15, 293syl 18 . . . . 5  |-  ( 0  <_  C  ->  (
( B  /  ( C  +  1 ) )  x.  ( C  +  1 ) )  =  B )
3130adantr 481 . . . 4  |-  ( ( 0  <_  C  /\  A  <_  ( B  / 
( C  +  1 ) ) )  -> 
( ( B  / 
( C  +  1 ) )  x.  ( C  +  1 ) )  =  B )
3226, 31breqtrd 4679 . . 3  |-  ( ( 0  <_  C  /\  A  <_  ( B  / 
( C  +  1 ) ) )  -> 
( A  x.  ( C  +  1 ) )  <_  B )
33323adant1 1079 . 2  |-  ( ( 0  <_  A  /\  0  <_  C  /\  A  <_  ( B  /  ( C  +  1 ) ) )  ->  ( A  x.  ( C  +  1 ) )  <_  B )
341, 2remulcli 10054 . . 3  |-  ( A  x.  C )  e.  RR
351, 4remulcli 10054 . . 3  |-  ( A  x.  ( C  + 
1 ) )  e.  RR
3634, 35, 16letri 10166 . 2  |-  ( ( ( A  x.  C
)  <_  ( A  x.  ( C  +  1 ) )  /\  ( A  x.  ( C  +  1 ) )  <_  B )  -> 
( A  x.  C
)  <_  B )
3711, 33, 36syl2anc 693 1  |-  ( ( 0  <_  A  /\  0  <_  C  /\  A  <_  ( B  /  ( C  +  1 ) ) )  ->  ( A  x.  C )  <_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator