Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln Structured version   Visualization version   Unicode version

Theorem llncvrlpln 34844
Description: An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln.b  |-  B  =  ( Base `  K
)
llncvrlpln.c  |-  C  =  (  <o  `  K )
llncvrlpln.n  |-  N  =  ( LLines `  K )
llncvrlpln.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
llncvrlpln  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  N  <->  Y  e.  P
) )

Proof of Theorem llncvrlpln
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpll1 1100 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  N )  ->  K  e.  HL )
2 simpll3 1102 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  N )  ->  Y  e.  B )
3 simpr 477 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  N )  ->  X  e.  N )
4 simplr 792 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  N )  ->  X C Y )
5 llncvrlpln.b . . . 4  |-  B  =  ( Base `  K
)
6 llncvrlpln.c . . . 4  |-  C  =  (  <o  `  K )
7 llncvrlpln.n . . . 4  |-  N  =  ( LLines `  K )
8 llncvrlpln.p . . . 4  |-  P  =  ( LPlanes `  K )
95, 6, 7, 8lplni 34818 . . 3  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  N )  /\  X C Y )  ->  Y  e.  P
)
101, 2, 3, 4, 9syl31anc 1329 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  N )  ->  Y  e.  P )
11 simpll1 1100 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  K  e.  HL )
12 simpll2 1101 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  X  e.  B )
13 eqid 2622 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
1413, 8lplnneat 34831 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  P )  ->  -.  Y  e.  (
Atoms `  K ) )
1511, 14sylancom 701 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  -.  Y  e.  ( Atoms `  K ) )
16 simplr 792 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  X C Y )
17 breq1 4656 . . . . . . . 8  |-  ( X  =  ( 0. `  K )  ->  ( X C Y  <->  ( 0. `  K ) C Y ) )
1816, 17syl5ibcom 235 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  ( X  =  ( 0. `  K )  ->  ( 0. `  K ) C Y ) )
19 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  Y  e.  B )
20 eqid 2622 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
215, 20, 6, 13isat2 34574 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( Y  e.  (
Atoms `  K )  <->  ( 0. `  K ) C Y ) )
2211, 19, 21syl2anc 693 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  ( Y  e.  ( Atoms `  K )  <->  ( 0. `  K ) C Y ) )
2318, 22sylibrd 249 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  ( X  =  ( 0. `  K )  ->  Y  e.  ( Atoms `  K )
) )
2423necon3bd 2808 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  ( -.  Y  e.  ( Atoms `  K )  ->  X  =/=  ( 0. `  K ) ) )
2515, 24mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  X  =/=  ( 0. `  K
) )
267, 8lplnnelln 34832 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  P )  ->  -.  Y  e.  N
)
2711, 26sylancom 701 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  -.  Y  e.  N )
285, 6, 13, 7atcvrlln 34806 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  ( Atoms `  K )  <->  Y  e.  N ) )
2928adantr 481 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  ( X  e.  ( Atoms `  K )  <->  Y  e.  N ) )
3027, 29mtbird 315 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  -.  X  e.  ( Atoms `  K ) )
31 eqid 2622 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
325, 31, 20, 13, 7llnle 34804 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  ( 0. `  K
)  /\  -.  X  e.  ( Atoms `  K )
) )  ->  E. z  e.  N  z ( le `  K ) X )
3311, 12, 25, 30, 32syl22anc 1327 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  E. z  e.  N  z ( le `  K ) X )
34 simpr3 1069 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) X )
35 simpll1 1100 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  K  e.  HL )
36 hlop 34649 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
3735, 36syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  K  e.  OP )
38 simpr2 1068 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  z  e.  N )
395, 7llnbase 34795 . . . . . . . . . 10  |-  ( z  e.  N  ->  z  e.  B )
4038, 39syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  z  e.  B )
41 simpll2 1101 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  X  e.  B )
42 simpll3 1102 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  Y  e.  B )
43 simpr1 1067 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  Y  e.  P )
445, 31, 6cvrle 34565 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X ( le
`  K ) Y )
4544adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  X ( le `  K ) Y )
46 hlpos 34652 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  Poset )
4735, 46syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  K  e.  Poset
)
485, 31postr 16953 . . . . . . . . . . . 12  |-  ( ( K  e.  Poset  /\  (
z  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
4947, 40, 41, 42, 48syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
5034, 45, 49mp2and 715 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) Y )
5131, 6, 7, 8llncvrlpln2 34843 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  z  e.  N  /\  Y  e.  P )  /\  z ( le `  K ) Y )  ->  z C Y )
5235, 38, 43, 50, 51syl31anc 1329 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  z C Y )
53 simplr 792 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  X C Y )
545, 31, 6cvrcmp2 34571 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( z  e.  B  /\  X  e.  B  /\  Y  e.  B
)  /\  ( z C Y  /\  X C Y ) )  -> 
( z ( le
`  K ) X  <-> 
z  =  X ) )
5537, 40, 41, 42, 52, 53, 54syl132anc 1344 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  ( z
( le `  K
) X  <->  z  =  X ) )
5634, 55mpbid 222 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  z  =  X )
5756, 38eqeltrrd 2702 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  P  /\  z  e.  N  /\  z ( le `  K ) X ) )  ->  X  e.  N )
58573exp2 1285 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( Y  e.  P  ->  ( z  e.  N  ->  ( z ( le `  K
) X  ->  X  e.  N ) ) ) )
5958imp 445 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  (
z  e.  N  -> 
( z ( le
`  K ) X  ->  X  e.  N
) ) )
6059rexlimdv 3030 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  ( E. z  e.  N  z ( le `  K ) X  ->  X  e.  N )
)
6133, 60mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  P )  ->  X  e.  N )
6210, 61impbida 877 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  N  <->  Y  e.  P
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940   0.cp0 17037   OPcops 34459    <o ccvr 34549   Atomscatm 34550   HLchlt 34637   LLinesclln 34777   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  2lplnmN  34845  2llnmj  34846  lplncvrlvol  34902  2lplnm2N  34907  2lplnmj  34908
  Copyright terms: Public domain W3C validator