| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplncvrlvol | Structured version Visualization version Unicode version | ||
| Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.) |
| Ref | Expression |
|---|---|
| lplncvrlvol.b |
|
| lplncvrlvol.c |
|
| lplncvrlvol.p |
|
| lplncvrlvol.v |
|
| Ref | Expression |
|---|---|
| lplncvrlvol |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 1100 |
. . 3
| |
| 2 | simpll3 1102 |
. . 3
| |
| 3 | simpr 477 |
. . 3
| |
| 4 | simplr 792 |
. . 3
| |
| 5 | lplncvrlvol.b |
. . . 4
| |
| 6 | lplncvrlvol.c |
. . . 4
| |
| 7 | lplncvrlvol.p |
. . . 4
| |
| 8 | lplncvrlvol.v |
. . . 4
| |
| 9 | 5, 6, 7, 8 | lvoli 34861 |
. . 3
|
| 10 | 1, 2, 3, 4, 9 | syl31anc 1329 |
. 2
|
| 11 | simpll1 1100 |
. . . 4
| |
| 12 | simpll2 1101 |
. . . 4
| |
| 13 | hllat 34650 |
. . . . . . . 8
| |
| 14 | 11, 13 | syl 17 |
. . . . . . 7
|
| 15 | simpll3 1102 |
. . . . . . 7
| |
| 16 | eqid 2622 |
. . . . . . . 8
| |
| 17 | 5, 16 | latref 17053 |
. . . . . . 7
|
| 18 | 14, 15, 17 | syl2anc 693 |
. . . . . 6
|
| 19 | 11 | adantr 481 |
. . . . . . . 8
|
| 20 | simplr 792 |
. . . . . . . 8
| |
| 21 | simpr 477 |
. . . . . . . 8
| |
| 22 | eqid 2622 |
. . . . . . . . 9
| |
| 23 | 16, 22, 8 | lvolnleat 34869 |
. . . . . . . 8
|
| 24 | 19, 20, 21, 23 | syl3anc 1326 |
. . . . . . 7
|
| 25 | 24 | ex 450 |
. . . . . 6
|
| 26 | 18, 25 | mt2d 131 |
. . . . 5
|
| 27 | simplr 792 |
. . . . . . . 8
| |
| 28 | breq1 4656 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl5ibcom 235 |
. . . . . . 7
|
| 30 | eqid 2622 |
. . . . . . . . 9
| |
| 31 | 5, 30, 6, 22 | isat2 34574 |
. . . . . . . 8
|
| 32 | 11, 15, 31 | syl2anc 693 |
. . . . . . 7
|
| 33 | 29, 32 | sylibrd 249 |
. . . . . 6
|
| 34 | 33 | necon3bd 2808 |
. . . . 5
|
| 35 | 26, 34 | mpd 15 |
. . . 4
|
| 36 | eqid 2622 |
. . . . . . 7
| |
| 37 | 36, 8 | lvolnelln 34875 |
. . . . . 6
|
| 38 | 11, 37 | sylancom 701 |
. . . . 5
|
| 39 | 11 | adantr 481 |
. . . . . 6
|
| 40 | 15 | adantr 481 |
. . . . . 6
|
| 41 | simpr 477 |
. . . . . 6
| |
| 42 | simpllr 799 |
. . . . . 6
| |
| 43 | 5, 6, 22, 36 | llni 34794 |
. . . . . 6
|
| 44 | 39, 40, 41, 42, 43 | syl31anc 1329 |
. . . . 5
|
| 45 | 38, 44 | mtand 691 |
. . . 4
|
| 46 | 7, 8 | lvolnelpln 34876 |
. . . . . 6
|
| 47 | 11, 46 | sylancom 701 |
. . . . 5
|
| 48 | 5, 6, 36, 7 | llncvrlpln 34844 |
. . . . . 6
|
| 49 | 48 | adantr 481 |
. . . . 5
|
| 50 | 47, 49 | mtbird 315 |
. . . 4
|
| 51 | 5, 16, 30, 22, 36, 7 | lplnle 34826 |
. . . 4
|
| 52 | 11, 12, 35, 45, 50, 51 | syl23anc 1333 |
. . 3
|
| 53 | simpr3 1069 |
. . . . . . . 8
| |
| 54 | simpll1 1100 |
. . . . . . . . . 10
| |
| 55 | hlop 34649 |
. . . . . . . . . 10
| |
| 56 | 54, 55 | syl 17 |
. . . . . . . . 9
|
| 57 | simpr2 1068 |
. . . . . . . . . 10
| |
| 58 | 5, 7 | lplnbase 34820 |
. . . . . . . . . 10
|
| 59 | 57, 58 | syl 17 |
. . . . . . . . 9
|
| 60 | simpll2 1101 |
. . . . . . . . 9
| |
| 61 | simpll3 1102 |
. . . . . . . . 9
| |
| 62 | simpr1 1067 |
. . . . . . . . . 10
| |
| 63 | 5, 16, 6 | cvrle 34565 |
. . . . . . . . . . . 12
|
| 64 | 63 | adantr 481 |
. . . . . . . . . . 11
|
| 65 | hlpos 34652 |
. . . . . . . . . . . . 13
| |
| 66 | 54, 65 | syl 17 |
. . . . . . . . . . . 12
|
| 67 | 5, 16 | postr 16953 |
. . . . . . . . . . . 12
|
| 68 | 66, 59, 60, 61, 67 | syl13anc 1328 |
. . . . . . . . . . 11
|
| 69 | 53, 64, 68 | mp2and 715 |
. . . . . . . . . 10
|
| 70 | 16, 6, 7, 8 | lplncvrlvol2 34901 |
. . . . . . . . . 10
|
| 71 | 54, 57, 62, 69, 70 | syl31anc 1329 |
. . . . . . . . 9
|
| 72 | simplr 792 |
. . . . . . . . 9
| |
| 73 | 5, 16, 6 | cvrcmp2 34571 |
. . . . . . . . 9
|
| 74 | 56, 59, 60, 61, 71, 72, 73 | syl132anc 1344 |
. . . . . . . 8
|
| 75 | 53, 74 | mpbid 222 |
. . . . . . 7
|
| 76 | 75, 57 | eqeltrrd 2702 |
. . . . . 6
|
| 77 | 76 | 3exp2 1285 |
. . . . 5
|
| 78 | 77 | imp 445 |
. . . 4
|
| 79 | 78 | rexlimdv 3030 |
. . 3
|
| 80 | 52, 79 | mpd 15 |
. 2
|
| 81 | 10, 80 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 |
| This theorem is referenced by: 2lplnmj 34908 |
| Copyright terms: Public domain | W3C validator |