MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcvg Structured version   Visualization version   Unicode version

Theorem lmcvg 21066
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1  |-  Z  =  ( ZZ>= `  M )
lmcvg.3  |-  ( ph  ->  P  e.  U )
lmcvg.4  |-  ( ph  ->  M  e.  ZZ )
lmcvg.5  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcvg.6  |-  ( ph  ->  U  e.  J )
Assertion
Ref Expression
lmcvg  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Distinct variable groups:    j, k, F    j, J, k    P, j, k    ph, j, k    U, j, k    j, M   
j, Z, k
Allowed substitution hint:    M( k)

Proof of Theorem lmcvg
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 lmcvg.6 . 2  |-  ( ph  ->  U  e.  J )
2 lmcvg.5 . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) P )
3 lmrcl 21035 . . . . . . . 8  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
5 eqid 2622 . . . . . . . 8  |-  U. J  =  U. J
65toptopon 20722 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
74, 6sylib 208 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
8 lmcvg.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
9 lmcvg.4 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
107, 8, 9lmbr2 21063 . . . . 5  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
112, 10mpbid 222 . . . 4  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )
1211simp3d 1075 . . 3  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
13 simpr 477 . . . . . . 7  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  ->  ( F `  k )  e.  u
)
1413ralimi 2952 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1514reximi 3011 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1615imim2i 16 . . . 4  |-  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )
1716ralimi 2952 . . 3  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
1812, 17syl 17 . 2  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
19 lmcvg.3 . 2  |-  ( ph  ->  P  e.  U )
20 eleq2 2690 . . . 4  |-  ( u  =  U  ->  ( P  e.  u  <->  P  e.  U ) )
21 eleq2 2690 . . . . 5  |-  ( u  =  U  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  U
) )
2221rexralbidv 3058 . . . 4  |-  ( u  =  U  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) )
2320, 22imbi12d 334 . . 3  |-  ( u  =  U  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) ) )
2423rspcv 3305 . 2  |-  ( U  e.  J  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U ) ) )
251, 18, 19, 24syl3c 66 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   ZZcz 11377   ZZ>=cuz 11687   Topctop 20698  TopOnctopon 20715   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-top 20699  df-topon 20716  df-lm 21033
This theorem is referenced by:  lmmo  21184  1stccnp  21265  1stckgenlem  21356  iscmet3lem2  23090
  Copyright terms: Public domain W3C validator