HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnop0 Structured version   Visualization version   Unicode version

Theorem lnop0 28825
Description: The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnop0  |-  ( T  e.  LinOp  ->  ( T `  0h )  =  0h )

Proof of Theorem lnop0
StepHypRef Expression
1 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
2 ax-hv0cl 27860 . . . . . . . . 9  |-  0h  e.  ~H
31, 2hvmulcli 27871 . . . . . . . 8  |-  ( 1  .h  0h )  e. 
~H
4 ax-hvaddid 27861 . . . . . . . 8  |-  ( ( 1  .h  0h )  e.  ~H  ->  ( (
1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
)
53, 4ax-mp 5 . . . . . . 7  |-  ( ( 1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
6 ax-hvmulid 27863 . . . . . . . 8  |-  ( 0h  e.  ~H  ->  (
1  .h  0h )  =  0h )
72, 6ax-mp 5 . . . . . . 7  |-  ( 1  .h  0h )  =  0h
85, 7eqtri 2644 . . . . . 6  |-  ( ( 1  .h  0h )  +h  0h )  =  0h
98fveq2i 6194 . . . . 5  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( T `  0h )
10 lnopl 28773 . . . . . . 7  |-  ( ( ( T  e.  LinOp  /\  1  e.  CC )  /\  ( 0h  e.  ~H  /\  0h  e.  ~H ) )  ->  ( T `  ( (
1  .h  0h )  +h  0h ) )  =  ( ( 1  .h  ( T `  0h ) )  +h  ( T `  0h )
) )
112, 2, 10mpanr12 721 . . . . . 6  |-  ( ( T  e.  LinOp  /\  1  e.  CC )  ->  ( T `  ( (
1  .h  0h )  +h  0h ) )  =  ( ( 1  .h  ( T `  0h ) )  +h  ( T `  0h )
) )
121, 11mpan2 707 . . . . 5  |-  ( T  e.  LinOp  ->  ( T `  ( ( 1  .h 
0h )  +h  0h ) )  =  ( ( 1  .h  ( T `  0h )
)  +h  ( T `
 0h ) ) )
139, 12syl5eqr 2670 . . . 4  |-  ( T  e.  LinOp  ->  ( T `  0h )  =  ( ( 1  .h  ( T `  0h )
)  +h  ( T `
 0h ) ) )
14 lnopf 28718 . . . . . . 7  |-  ( T  e.  LinOp  ->  T : ~H
--> ~H )
15 ffvelrn 6357 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  0h  e.  ~H )  -> 
( T `  0h )  e.  ~H )
162, 15mpan2 707 . . . . . . 7  |-  ( T : ~H --> ~H  ->  ( T `  0h )  e.  ~H )
1714, 16syl 17 . . . . . 6  |-  ( T  e.  LinOp  ->  ( T `  0h )  e.  ~H )
18 ax-hvmulid 27863 . . . . . 6  |-  ( ( T `  0h )  e.  ~H  ->  ( 1  .h  ( T `  0h ) )  =  ( T `  0h )
)
1917, 18syl 17 . . . . 5  |-  ( T  e.  LinOp  ->  ( 1  .h  ( T `  0h ) )  =  ( T `  0h )
)
2019oveq1d 6665 . . . 4  |-  ( T  e.  LinOp  ->  ( (
1  .h  ( T `
 0h ) )  +h  ( T `  0h ) )  =  ( ( T `  0h )  +h  ( T `  0h ) ) )
2113, 20eqtrd 2656 . . 3  |-  ( T  e.  LinOp  ->  ( T `  0h )  =  ( ( T `  0h )  +h  ( T `  0h ) ) )
2221oveq1d 6665 . 2  |-  ( T  e.  LinOp  ->  ( ( T `  0h )  -h  ( T `  0h ) )  =  ( ( ( T `  0h )  +h  ( T `  0h )
)  -h  ( T `
 0h ) ) )
23 hvsubid 27883 . . 3  |-  ( ( T `  0h )  e.  ~H  ->  ( ( T `  0h )  -h  ( T `  0h ) )  =  0h )
2417, 23syl 17 . 2  |-  ( T  e.  LinOp  ->  ( ( T `  0h )  -h  ( T `  0h ) )  =  0h )
25 hvpncan 27896 . . . 4  |-  ( ( ( T `  0h )  e.  ~H  /\  ( T `  0h )  e.  ~H )  ->  (
( ( T `  0h )  +h  ( T `  0h )
)  -h  ( T `
 0h ) )  =  ( T `  0h ) )
2625anidms 677 . . 3  |-  ( ( T `  0h )  e.  ~H  ->  ( (
( T `  0h )  +h  ( T `  0h ) )  -h  ( T `  0h )
)  =  ( T `
 0h ) )
2717, 26syl 17 . 2  |-  ( T  e.  LinOp  ->  ( (
( T `  0h )  +h  ( T `  0h ) )  -h  ( T `  0h )
)  =  ( T `
 0h ) )
2822, 24, 273eqtr3rd 2665 1  |-  ( T  e.  LinOp  ->  ( T `  0h )  =  0h )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937   ~Hchil 27776    +h cva 27777    .h csm 27778   0hc0v 27781    -h cmv 27782   LinOpclo 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-hvsub 27828  df-lnop 28700
This theorem is referenced by:  lnopmul  28826  lnop0i  28829
  Copyright terms: Public domain W3C validator