HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem2 Structured version   Visualization version   Unicode version

Theorem lnopeq0lem2 28865
Description: Lemma for lnopeq0i 28866. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopeq0.1  |-  T  e. 
LinOp
Assertion
Ref Expression
lnopeq0lem2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )

Proof of Theorem lnopeq0lem2
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  A )  =  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )
21oveq1d 6665 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  B ) )
3 oveq1 6657 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  +h  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  +h  B
) )
43fveq2d 6195 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  +h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) ) )
54, 3oveq12d 6668 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  +h  B ) ) 
.ih  ( A  +h  B ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) ) )
6 oveq1 6657 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  B
) )
76fveq2d 6195 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  -h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )
87, 6oveq12d 6668 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )
95, 8oveq12d 6668 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  ( A  +h  B
) )  .ih  ( A  +h  B ) )  -  ( ( T `
 ( A  -h  B ) )  .ih  ( A  -h  B
) ) )  =  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) ) )
10 oveq1 6657 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  +h  ( _i  .h  B ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  +h  (
_i  .h  B )
) )
1110fveq2d 6195 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  +h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) ) )
1211, 10oveq12d 6668 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) ) )
13 oveq1 6657 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  ( _i  .h  B ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  (
_i  .h  B )
) )
1413fveq2d 6195 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  -h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )
1514, 13oveq12d 6668 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )
1612, 15oveq12d 6668 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  ( A  +h  (
_i  .h  B )
) )  .ih  ( A  +h  ( _i  .h  B ) ) )  -  ( ( T `
 ( A  -h  ( _i  .h  B
) ) )  .ih  ( A  -h  (
_i  .h  B )
) ) )  =  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) )
1716oveq2d 6666 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
_i  x.  ( (
( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( A  -h  (
_i  .h  B )
) )  .ih  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( _i  x.  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) ) )
189, 17oveq12d 6668 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  =  ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) ) )
1918oveq1d 6665 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( ( T `  ( A  +h  B ) ) 
.ih  ( A  +h  B ) )  -  ( ( T `  ( A  -h  B
) )  .ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( A  -h  (
_i  .h  B )
) )  .ih  ( A  -h  ( _i  .h  B ) ) ) ) ) )  / 
4 )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )
202, 19eqeq12d 2637 . 2  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
)  <->  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  B )  =  ( ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) ) )
21 oveq2 6658 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
) )
22 oveq2 6658 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  +h  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )
2322fveq2d 6195 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) ) )
2423, 22oveq12d 6668 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) ) )
25 oveq2 6658 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) )
2625fveq2d 6195 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) ) )
2726, 25oveq12d 6668 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )
2824, 27oveq12d 6668 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )  =  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
29 oveq2 6658 . . . . . . . . . 10  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
_i  .h  B )  =  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) )
3029oveq2d 6666 . . . . . . . . 9  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) )  =  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )
3130fveq2d 6195 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
3231, 30oveq12d 6668 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) )
3329oveq2d 6666 . . . . . . . . 9  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )
3433fveq2d 6195 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
3534, 33oveq12d 6668 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) )
3632, 35oveq12d 6668 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )  =  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  -  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) ) )
3736oveq2d 6666 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
_i  x.  ( (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) )  =  ( _i  x.  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  -  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) ) ) )
3828, 37oveq12d 6668 . . . 4  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  =  ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) ) )
3938oveq1d 6665 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
)  =  ( ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
) )
4021, 39eqeq12d 2637 . 2  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  =  ( ( ( ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) ) )  /  4 )  <-> 
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
) ) )
41 lnopeq0.1 . . 3  |-  T  e. 
LinOp
42 ifhvhv0 27879 . . 3  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
43 ifhvhv0 27879 . . 3  |-  if ( B  e.  ~H ,  B ,  0h )  e.  ~H
4441, 42, 43lnopeq0lem1 28864 . 2  |-  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
)
4520, 40, 44dedth2h 4140 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   ` cfv 5888  (class class class)co 6650   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   4c4 11072   ~Hchil 27776    +h cva 27777    .h csm 27778    .ih csp 27779   0hc0v 27781    -h cmv 27782   LinOpclo 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-3 11080  df-4 11081  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828  df-lnop 28700
This theorem is referenced by:  lnopeq0i  28866
  Copyright terms: Public domain W3C validator