| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnle | Structured version Visualization version Unicode version | ||
| Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnle.b |
|
| lplnle.l |
|
| lplnle.z |
|
| lplnle.a |
|
| lplnle.n |
|
| lplnle.p |
|
| Ref | Expression |
|---|---|
| lplnle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lplnle.b |
. . . 4
| |
| 2 | lplnle.l |
. . . 4
| |
| 3 | lplnle.z |
. . . 4
| |
| 4 | lplnle.a |
. . . 4
| |
| 5 | lplnle.n |
. . . 4
| |
| 6 | 1, 2, 3, 4, 5 | llnle 34804 |
. . 3
|
| 7 | 6 | 3adantr3 1222 |
. 2
|
| 8 | simp1ll 1124 |
. . . . . 6
| |
| 9 | 1, 5 | llnbase 34795 |
. . . . . . 7
|
| 10 | 9 | 3ad2ant2 1083 |
. . . . . 6
|
| 11 | simp1lr 1125 |
. . . . . 6
| |
| 12 | simp3 1063 |
. . . . . . 7
| |
| 13 | simp2 1062 |
. . . . . . . 8
| |
| 14 | simp1r3 1159 |
. . . . . . . 8
| |
| 15 | nelne2 2891 |
. . . . . . . 8
| |
| 16 | 13, 14, 15 | syl2anc 693 |
. . . . . . 7
|
| 17 | eqid 2622 |
. . . . . . . . 9
| |
| 18 | 2, 17 | pltval 16960 |
. . . . . . . 8
|
| 19 | 8, 13, 11, 18 | syl3anc 1326 |
. . . . . . 7
|
| 20 | 12, 16, 19 | mpbir2and 957 |
. . . . . 6
|
| 21 | eqid 2622 |
. . . . . . 7
| |
| 22 | eqid 2622 |
. . . . . . 7
| |
| 23 | 1, 2, 17, 21, 22, 4 | hlrelat3 34698 |
. . . . . 6
|
| 24 | 8, 10, 11, 20, 23 | syl31anc 1329 |
. . . . 5
|
| 25 | simp1ll 1124 |
. . . . . . . . . . 11
| |
| 26 | hllat 34650 |
. . . . . . . . . . . . 13
| |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . 12
|
| 28 | simp21 1094 |
. . . . . . . . . . . . 13
| |
| 29 | 28, 9 | syl 17 |
. . . . . . . . . . . 12
|
| 30 | simp23 1096 |
. . . . . . . . . . . . 13
| |
| 31 | 1, 4 | atbase 34576 |
. . . . . . . . . . . . 13
|
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . 12
|
| 33 | 1, 21 | latjcl 17051 |
. . . . . . . . . . . 12
|
| 34 | 27, 29, 32, 33 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 35 | simp3l 1089 |
. . . . . . . . . . 11
| |
| 36 | lplnle.p |
. . . . . . . . . . . 12
| |
| 37 | 1, 22, 5, 36 | lplni 34818 |
. . . . . . . . . . 11
|
| 38 | 25, 34, 28, 35, 37 | syl31anc 1329 |
. . . . . . . . . 10
|
| 39 | simp3r 1090 |
. . . . . . . . . 10
| |
| 40 | breq1 4656 |
. . . . . . . . . . 11
| |
| 41 | 40 | rspcev 3309 |
. . . . . . . . . 10
|
| 42 | 38, 39, 41 | syl2anc 693 |
. . . . . . . . 9
|
| 43 | 42 | 3exp 1264 |
. . . . . . . 8
|
| 44 | 43 | 3expd 1284 |
. . . . . . 7
|
| 45 | 44 | 3imp 1256 |
. . . . . 6
|
| 46 | 45 | rexlimdv 3030 |
. . . . 5
|
| 47 | 24, 46 | mpd 15 |
. . . 4
|
| 48 | 47 | 3exp 1264 |
. . 3
|
| 49 | 48 | rexlimdv 3030 |
. 2
|
| 50 | 7, 49 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 |
| This theorem is referenced by: lplncvrlvol 34902 |
| Copyright terms: Public domain | W3C validator |