Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnle Structured version   Visualization version   Unicode version

Theorem lplnle 34826
Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
lplnle.b  |-  B  =  ( Base `  K
)
lplnle.l  |-  .<_  =  ( le `  K )
lplnle.z  |-  .0.  =  ( 0. `  K )
lplnle.a  |-  A  =  ( Atoms `  K )
lplnle.n  |-  N  =  ( LLines `  K )
lplnle.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
lplnle  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A  /\  -.  X  e.  N ) )  ->  E. y  e.  P  y  .<_  X )
Distinct variable groups:    y, K    y, 
.<_    y, P    y, X
Allowed substitution hints:    A( y)    B( y)    N( y)    .0. ( y)

Proof of Theorem lplnle
Dummy variables  z  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lplnle.b . . . 4  |-  B  =  ( Base `  K
)
2 lplnle.l . . . 4  |-  .<_  =  ( le `  K )
3 lplnle.z . . . 4  |-  .0.  =  ( 0. `  K )
4 lplnle.a . . . 4  |-  A  =  ( Atoms `  K )
5 lplnle.n . . . 4  |-  N  =  ( LLines `  K )
61, 2, 3, 4, 5llnle 34804 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A ) )  ->  E. z  e.  N  z  .<_  X )
763adantr3 1222 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A  /\  -.  X  e.  N ) )  ->  E. z  e.  N  z  .<_  X )
8 simp1ll 1124 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  K  e.  HL )
91, 5llnbase 34795 . . . . . . 7  |-  ( z  e.  N  ->  z  e.  B )
1093ad2ant2 1083 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  z  e.  B )
11 simp1lr 1125 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  X  e.  B )
12 simp3 1063 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  z  .<_  X )
13 simp2 1062 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  z  e.  N )
14 simp1r3 1159 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  -.  X  e.  N )
15 nelne2 2891 . . . . . . . 8  |-  ( ( z  e.  N  /\  -.  X  e.  N
)  ->  z  =/=  X )
1613, 14, 15syl2anc 693 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  z  =/=  X )
17 eqid 2622 . . . . . . . . 9  |-  ( lt
`  K )  =  ( lt `  K
)
182, 17pltval 16960 . . . . . . . 8  |-  ( ( K  e.  HL  /\  z  e.  N  /\  X  e.  B )  ->  ( z ( lt
`  K ) X  <-> 
( z  .<_  X  /\  z  =/=  X ) ) )
198, 13, 11, 18syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  (
z ( lt `  K ) X  <->  ( z  .<_  X  /\  z  =/= 
X ) ) )
2012, 16, 19mpbir2and 957 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  z
( lt `  K
) X )
21 eqid 2622 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
22 eqid 2622 . . . . . . 7  |-  (  <o  `  K )  =  ( 
<o  `  K )
231, 2, 17, 21, 22, 4hlrelat3 34698 . . . . . 6  |-  ( ( ( K  e.  HL  /\  z  e.  B  /\  X  e.  B )  /\  z ( lt `  K ) X )  ->  E. p  e.  A  ( z (  <o  `  K ) ( z ( join `  K
) p )  /\  ( z ( join `  K ) p ) 
.<_  X ) )
248, 10, 11, 20, 23syl31anc 1329 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  E. p  e.  A  ( z
(  <o  `  K )
( z ( join `  K ) p )  /\  ( z (
join `  K )
p )  .<_  X ) )
25 simp1ll 1124 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  ->  K  e.  HL )
26 hllat 34650 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  Lat )
2725, 26syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  ->  K  e.  Lat )
28 simp21 1094 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  -> 
z  e.  N )
2928, 9syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  -> 
z  e.  B )
30 simp23 1096 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  ->  p  e.  A )
311, 4atbase 34576 . . . . . . . . . . . . 13  |-  ( p  e.  A  ->  p  e.  B )
3230, 31syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  ->  p  e.  B )
331, 21latjcl 17051 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  p  e.  B )  ->  ( z ( join `  K ) p )  e.  B )
3427, 29, 32, 33syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  -> 
( z ( join `  K ) p )  e.  B )
35 simp3l 1089 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  -> 
z (  <o  `  K
) ( z (
join `  K )
p ) )
36 lplnle.p . . . . . . . . . . . 12  |-  P  =  ( LPlanes `  K )
371, 22, 5, 36lplni 34818 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( z ( join `  K ) p )  e.  B  /\  z  e.  N )  /\  z
(  <o  `  K )
( z ( join `  K ) p ) )  ->  ( z
( join `  K )
p )  e.  P
)
3825, 34, 28, 35, 37syl31anc 1329 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  -> 
( z ( join `  K ) p )  e.  P )
39 simp3r 1090 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  -> 
( z ( join `  K ) p ) 
.<_  X )
40 breq1 4656 . . . . . . . . . . 11  |-  ( y  =  ( z (
join `  K )
p )  ->  (
y  .<_  X  <->  ( z
( join `  K )
p )  .<_  X ) )
4140rspcev 3309 . . . . . . . . . 10  |-  ( ( ( z ( join `  K ) p )  e.  P  /\  (
z ( join `  K
) p )  .<_  X )  ->  E. y  e.  P  y  .<_  X )
4238, 39, 41syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  (
z  e.  N  /\  z  .<_  X  /\  p  e.  A )  /\  (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X ) )  ->  E. y  e.  P  y  .<_  X )
43423exp 1264 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A  /\  -.  X  e.  N ) )  -> 
( ( z  e.  N  /\  z  .<_  X  /\  p  e.  A
)  ->  ( (
z (  <o  `  K
) ( z (
join `  K )
p )  /\  (
z ( join `  K
) p )  .<_  X )  ->  E. y  e.  P  y  .<_  X ) ) )
44433expd 1284 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A  /\  -.  X  e.  N ) )  -> 
( z  e.  N  ->  ( z  .<_  X  -> 
( p  e.  A  ->  ( ( z ( 
<o  `  K ) ( z ( join `  K
) p )  /\  ( z ( join `  K ) p ) 
.<_  X )  ->  E. y  e.  P  y  .<_  X ) ) ) ) )
45443imp 1256 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  (
p  e.  A  -> 
( ( z ( 
<o  `  K ) ( z ( join `  K
) p )  /\  ( z ( join `  K ) p ) 
.<_  X )  ->  E. y  e.  P  y  .<_  X ) ) )
4645rexlimdv 3030 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  ( E. p  e.  A  ( z (  <o  `  K ) ( z ( join `  K
) p )  /\  ( z ( join `  K ) p ) 
.<_  X )  ->  E. y  e.  P  y  .<_  X ) )
4724, 46mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  .0.  /\  -.  X  e.  A  /\  -.  X  e.  N
) )  /\  z  e.  N  /\  z  .<_  X )  ->  E. y  e.  P  y  .<_  X )
48473exp 1264 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A  /\  -.  X  e.  N ) )  -> 
( z  e.  N  ->  ( z  .<_  X  ->  E. y  e.  P  y  .<_  X ) ) )
4948rexlimdv 3030 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A  /\  -.  X  e.  N ) )  -> 
( E. z  e.  N  z  .<_  X  ->  E. y  e.  P  y  .<_  X ) )
507, 49mpd 15 1  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/= 
.0.  /\  -.  X  e.  A  /\  -.  X  e.  N ) )  ->  E. y  e.  P  y  .<_  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   ltcplt 16941   joincjn 16944   0.cp0 17037   Latclat 17045    <o ccvr 34549   Atomscatm 34550   HLchlt 34637   LLinesclln 34777   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  lplncvrlvol  34902
  Copyright terms: Public domain W3C validator