| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnnle2at | Structured version Visualization version Unicode version | ||
| Description: A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.) |
| Ref | Expression |
|---|---|
| lplnnle2at.l |
|
| lplnnle2at.j |
|
| lplnnle2at.a |
|
| lplnnle2at.p |
|
| Ref | Expression |
|---|---|
| lplnnle2at |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1067 |
. . . 4
| |
| 2 | eqid 2622 |
. . . . . 6
| |
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | eqid 2622 |
. . . . . 6
| |
| 5 | lplnnle2at.p |
. . . . . 6
| |
| 6 | 2, 3, 4, 5 | islpln 34816 |
. . . . 5
|
| 7 | 6 | adantr 481 |
. . . 4
|
| 8 | 1, 7 | mpbid 222 |
. . 3
|
| 9 | 8 | simprd 479 |
. 2
|
| 10 | oveq1 6657 |
. . . . . . . . 9
| |
| 11 | 10 | breq2d 4665 |
. . . . . . . 8
|
| 12 | 11 | notbid 308 |
. . . . . . 7
|
| 13 | simpl1 1064 |
. . . . . . . . 9
| |
| 14 | simpl3l 1116 |
. . . . . . . . 9
| |
| 15 | simpl22 1140 |
. . . . . . . . . 10
| |
| 16 | simpl23 1141 |
. . . . . . . . . 10
| |
| 17 | simpr 477 |
. . . . . . . . . 10
| |
| 18 | lplnnle2at.j |
. . . . . . . . . . 11
| |
| 19 | lplnnle2at.a |
. . . . . . . . . . 11
| |
| 20 | 18, 19, 4 | llni2 34798 |
. . . . . . . . . 10
|
| 21 | 13, 15, 16, 17, 20 | syl31anc 1329 |
. . . . . . . . 9
|
| 22 | eqid 2622 |
. . . . . . . . . 10
| |
| 23 | 22, 4 | llnnlt 34809 |
. . . . . . . . 9
|
| 24 | 13, 14, 21, 23 | syl3anc 1326 |
. . . . . . . 8
|
| 25 | 2, 4 | llnbase 34795 |
. . . . . . . . . . 11
|
| 26 | 14, 25 | syl 17 |
. . . . . . . . . 10
|
| 27 | simpl21 1139 |
. . . . . . . . . . 11
| |
| 28 | 2, 5 | lplnbase 34820 |
. . . . . . . . . . 11
|
| 29 | 27, 28 | syl 17 |
. . . . . . . . . 10
|
| 30 | simpl3r 1117 |
. . . . . . . . . 10
| |
| 31 | 2, 22, 3 | cvrlt 34557 |
. . . . . . . . . 10
|
| 32 | 13, 26, 29, 30, 31 | syl31anc 1329 |
. . . . . . . . 9
|
| 33 | hlpos 34652 |
. . . . . . . . . . 11
| |
| 34 | 13, 33 | syl 17 |
. . . . . . . . . 10
|
| 35 | 2, 18, 19 | hlatjcl 34653 |
. . . . . . . . . . 11
|
| 36 | 13, 15, 16, 35 | syl3anc 1326 |
. . . . . . . . . 10
|
| 37 | lplnnle2at.l |
. . . . . . . . . . 11
| |
| 38 | 2, 37, 22 | pltletr 16971 |
. . . . . . . . . 10
|
| 39 | 34, 26, 29, 36, 38 | syl13anc 1328 |
. . . . . . . . 9
|
| 40 | 32, 39 | mpand 711 |
. . . . . . . 8
|
| 41 | 24, 40 | mtod 189 |
. . . . . . 7
|
| 42 | simp1 1061 |
. . . . . . . . . 10
| |
| 43 | simp3l 1089 |
. . . . . . . . . 10
| |
| 44 | simp23 1096 |
. . . . . . . . . 10
| |
| 45 | 37, 19, 4 | llnnleat 34799 |
. . . . . . . . . 10
|
| 46 | 42, 43, 44, 45 | syl3anc 1326 |
. . . . . . . . 9
|
| 47 | 43, 25 | syl 17 |
. . . . . . . . . . . 12
|
| 48 | simp21 1094 |
. . . . . . . . . . . . 13
| |
| 49 | 48, 28 | syl 17 |
. . . . . . . . . . . 12
|
| 50 | simp3r 1090 |
. . . . . . . . . . . 12
| |
| 51 | 42, 47, 49, 50, 31 | syl31anc 1329 |
. . . . . . . . . . 11
|
| 52 | 33 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
|
| 53 | 2, 19 | atbase 34576 |
. . . . . . . . . . . . 13
|
| 54 | 44, 53 | syl 17 |
. . . . . . . . . . . 12
|
| 55 | 2, 37, 22 | pltletr 16971 |
. . . . . . . . . . . 12
|
| 56 | 52, 47, 49, 54, 55 | syl13anc 1328 |
. . . . . . . . . . 11
|
| 57 | 51, 56 | mpand 711 |
. . . . . . . . . 10
|
| 58 | 37, 22 | pltle 16961 |
. . . . . . . . . . 11
|
| 59 | 42, 43, 44, 58 | syl3anc 1326 |
. . . . . . . . . 10
|
| 60 | 57, 59 | syld 47 |
. . . . . . . . 9
|
| 61 | 46, 60 | mtod 189 |
. . . . . . . 8
|
| 62 | 18, 19 | hlatjidm 34655 |
. . . . . . . . . 10
|
| 63 | 42, 44, 62 | syl2anc 693 |
. . . . . . . . 9
|
| 64 | 63 | breq2d 4665 |
. . . . . . . 8
|
| 65 | 61, 64 | mtbird 315 |
. . . . . . 7
|
| 66 | 12, 41, 65 | pm2.61ne 2879 |
. . . . . 6
|
| 67 | 66 | 3exp 1264 |
. . . . 5
|
| 68 | 67 | exp4a 633 |
. . . 4
|
| 69 | 68 | imp 445 |
. . 3
|
| 70 | 69 | rexlimdv 3030 |
. 2
|
| 71 | 9, 70 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 |
| This theorem is referenced by: lplnnleat 34828 lplnnlelln 34829 2atnelpln 34830 lvolnle3at 34868 |
| Copyright terms: Public domain | W3C validator |