Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatb Structured version   Visualization version   Unicode version

Theorem ltrnatb 35423
Description: The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnatb.b  |-  B  =  ( Base `  K
)
ltrnatb.a  |-  A  =  ( Atoms `  K )
ltrnatb.h  |-  H  =  ( LHyp `  K
)
ltrnatb.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnatb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )

Proof of Theorem ltrnatb
StepHypRef Expression
1 simp3 1063 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  P  e.  B )
2 ltrnatb.b . . . . 5  |-  B  =  ( Base `  K
)
3 ltrnatb.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 ltrnatb.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrncl 35411 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( F `  P )  e.  B
)
61, 52thd 255 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  B  <->  ( F `  P )  e.  B
) )
7 simp1 1061 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simp2 1062 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  F  e.  T )
9 simp1l 1085 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  K  e.  HL )
10 hlop 34649 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
11 eqid 2622 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
122, 11op0cl 34471 . . . . . 6  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  B )
139, 10, 123syl 18 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( 0. `  K )  e.  B
)
14 eqid 2622 . . . . . 6  |-  (  <o  `  K )  =  ( 
<o  `  K )
152, 14, 3, 4ltrncvr 35419 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( 0. `  K )  e.  B  /\  P  e.  B
) )  ->  (
( 0. `  K
) (  <o  `  K
) P  <->  ( F `  ( 0. `  K
) ) (  <o  `  K ) ( F `
 P ) ) )
167, 8, 13, 1, 15syl112anc 1330 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( 0. `  K ) ( 
<o  `  K ) P  <-> 
( F `  ( 0. `  K ) ) (  <o  `  K )
( F `  P
) ) )
179, 10syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  K  e.  OP )
18 simp1r 1086 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  W  e.  H )
192, 3lhpbase 35284 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  B )
2018, 19syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  W  e.  B )
21 eqid 2622 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
222, 21, 11op0le 34473 . . . . . . 7  |-  ( ( K  e.  OP  /\  W  e.  B )  ->  ( 0. `  K
) ( le `  K ) W )
2317, 20, 22syl2anc 693 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( 0. `  K ) ( le
`  K ) W )
242, 21, 3, 4ltrnval1 35420 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( 0. `  K )  e.  B  /\  ( 0. `  K
) ( le `  K ) W ) )  ->  ( F `  ( 0. `  K
) )  =  ( 0. `  K ) )
257, 8, 13, 23, 24syl112anc 1330 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( F `  ( 0. `  K
) )  =  ( 0. `  K ) )
2625breq1d 4663 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( F `  ( 0. `  K ) ) ( 
<o  `  K ) ( F `  P )  <-> 
( 0. `  K
) (  <o  `  K
) ( F `  P ) ) )
2716, 26bitrd 268 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( 0. `  K ) ( 
<o  `  K ) P  <-> 
( 0. `  K
) (  <o  `  K
) ( F `  P ) ) )
286, 27anbi12d 747 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( P  e.  B  /\  ( 0. `  K ) (  <o  `  K ) P )  <->  ( ( F `  P )  e.  B  /\  ( 0. `  K ) ( 
<o  `  K ) ( F `  P ) ) ) )
29 ltrnatb.a . . . 4  |-  A  =  ( Atoms `  K )
302, 11, 14, 29isat 34573 . . 3  |-  ( K  e.  HL  ->  ( P  e.  A  <->  ( P  e.  B  /\  ( 0. `  K ) ( 
<o  `  K ) P ) ) )
319, 30syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  A  <->  ( P  e.  B  /\  ( 0.
`  K ) ( 
<o  `  K ) P ) ) )
322, 11, 14, 29isat 34573 . . 3  |-  ( K  e.  HL  ->  (
( F `  P
)  e.  A  <->  ( ( F `  P )  e.  B  /\  ( 0. `  K ) ( 
<o  `  K ) ( F `  P ) ) ) )
339, 32syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( F `  P )  e.  A  <->  ( ( F `
 P )  e.  B  /\  ( 0.
`  K ) ( 
<o  `  K ) ( F `  P ) ) ) )
3428, 31, 333bitr4d 300 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   0.cp0 17037   OPcops 34459    <o ccvr 34549   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-plt 16958  df-glb 16975  df-p0 17039  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391
This theorem is referenced by:  ltrncnvatb  35424  ltrnel  35425  ltrnat  35426
  Copyright terms: Public domain W3C validator