MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnconst Structured version   Visualization version   Unicode version

Theorem mapsnconst 7903
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
Assertion
Ref Expression
mapsnconst  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . 4  |-  B  e. 
_V
2 snex 4908 . . . 4  |-  { X }  e.  _V
31, 2elmap 7886 . . 3  |-  ( F  e.  ( B  ^m  { X } )  <->  F : { X } --> B )
4 mapsncnv.x . . . . . 6  |-  X  e. 
_V
54fsn2 6403 . . . . 5  |-  ( F : { X } --> B 
<->  ( ( F `  X )  e.  B  /\  F  =  { <. X ,  ( F `
 X ) >. } ) )
65simprbi 480 . . . 4  |-  ( F : { X } --> B  ->  F  =  { <. X ,  ( F `
 X ) >. } )
7 mapsncnv.s . . . . . 6  |-  S  =  { X }
87xpeq1i 5135 . . . . 5  |-  ( S  X.  { ( F `
 X ) } )  =  ( { X }  X.  {
( F `  X
) } )
9 fvex 6201 . . . . . 6  |-  ( F `
 X )  e. 
_V
104, 9xpsn 6407 . . . . 5  |-  ( { X }  X.  {
( F `  X
) } )  =  { <. X ,  ( F `  X )
>. }
118, 10eqtr2i 2645 . . . 4  |-  { <. X ,  ( F `  X ) >. }  =  ( S  X.  { ( F `  X ) } )
126, 11syl6eq 2672 . . 3  |-  ( F : { X } --> B  ->  F  =  ( S  X.  { ( F `  X ) } ) )
133, 12sylbi 207 . 2  |-  ( F  e.  ( B  ^m  { X } )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
147oveq2i 6661 . 2  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
1513, 14eleq2s 2719 1  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by:  mapsncnv  7904  fvcoe1  19577  coe1mul2lem1  19637  coe1mul2  19639
  Copyright terms: Public domain W3C validator