![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version Unicode version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
xpeq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | xpeq1 5128 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-opab 4713 df-xp 5120 |
This theorem is referenced by: iunxpconst 5175 xpindi 5255 difxp2 5560 resdmres 5625 curry2 7272 mapsnconst 7903 mapsncnv 7904 cda1dif 8998 cdaassen 9004 infcda1 9015 geomulcvg 14607 hofcl 16899 evlsval 19519 matvsca2 20234 ovoliunnul 23275 vitalilem5 23381 lgam1 24790 finxp2o 33236 finxp3o 33237 poimirlem3 33412 poimirlem5 33414 poimirlem10 33419 poimirlem22 33431 poimirlem23 33432 mendvscafval 37760 binomcxplemnn0 38548 xpprsng 42110 |
Copyright terms: Public domain | W3C validator |