| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsncnv | Structured version Visualization version Unicode version | ||
| Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s |
|
| mapsncnv.b |
|
| mapsncnv.x |
|
| mapsncnv.f |
|
| Ref | Expression |
|---|---|
| mapsncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 7879 |
. . . . . . . . 9
| |
| 2 | mapsncnv.x |
. . . . . . . . . 10
| |
| 3 | 2 | snid 4208 |
. . . . . . . . 9
|
| 4 | ffvelrn 6357 |
. . . . . . . . 9
| |
| 5 | 1, 3, 4 | sylancl 694 |
. . . . . . . 8
|
| 6 | eqid 2622 |
. . . . . . . . 9
| |
| 7 | mapsncnv.b |
. . . . . . . . 9
| |
| 8 | 6, 7, 2 | mapsnconst 7903 |
. . . . . . . 8
|
| 9 | 5, 8 | jca 554 |
. . . . . . 7
|
| 10 | eleq1 2689 |
. . . . . . . 8
| |
| 11 | sneq 4187 |
. . . . . . . . . 10
| |
| 12 | 11 | xpeq2d 5139 |
. . . . . . . . 9
|
| 13 | 12 | eqeq2d 2632 |
. . . . . . . 8
|
| 14 | 10, 13 | anbi12d 747 |
. . . . . . 7
|
| 15 | 9, 14 | syl5ibrcom 237 |
. . . . . 6
|
| 16 | 15 | imp 445 |
. . . . 5
|
| 17 | fconst6g 6094 |
. . . . . . . . 9
| |
| 18 | snex 4908 |
. . . . . . . . . 10
| |
| 19 | 7, 18 | elmap 7886 |
. . . . . . . . 9
|
| 20 | 17, 19 | sylibr 224 |
. . . . . . . 8
|
| 21 | vex 3203 |
. . . . . . . . . . 11
| |
| 22 | 21 | fvconst2 6469 |
. . . . . . . . . 10
|
| 23 | 3, 22 | mp1i 13 |
. . . . . . . . 9
|
| 24 | 23 | eqcomd 2628 |
. . . . . . . 8
|
| 25 | 20, 24 | jca 554 |
. . . . . . 7
|
| 26 | eleq1 2689 |
. . . . . . . 8
| |
| 27 | fveq1 6190 |
. . . . . . . . 9
| |
| 28 | 27 | eqeq2d 2632 |
. . . . . . . 8
|
| 29 | 26, 28 | anbi12d 747 |
. . . . . . 7
|
| 30 | 25, 29 | syl5ibrcom 237 |
. . . . . 6
|
| 31 | 30 | imp 445 |
. . . . 5
|
| 32 | 16, 31 | impbii 199 |
. . . 4
|
| 33 | mapsncnv.s |
. . . . . . 7
| |
| 34 | 33 | oveq2i 6661 |
. . . . . 6
|
| 35 | 34 | eleq2i 2693 |
. . . . 5
|
| 36 | 35 | anbi1i 731 |
. . . 4
|
| 37 | 33 | xpeq1i 5135 |
. . . . . 6
|
| 38 | 37 | eqeq2i 2634 |
. . . . 5
|
| 39 | 38 | anbi2i 730 |
. . . 4
|
| 40 | 32, 36, 39 | 3bitr4i 292 |
. . 3
|
| 41 | 40 | opabbii 4717 |
. 2
|
| 42 | mapsncnv.f |
. . . . 5
| |
| 43 | df-mpt 4730 |
. . . . 5
| |
| 44 | 42, 43 | eqtri 2644 |
. . . 4
|
| 45 | 44 | cnveqi 5297 |
. . 3
|
| 46 | cnvopab 5533 |
. . 3
| |
| 47 | 45, 46 | eqtri 2644 |
. 2
|
| 48 | df-mpt 4730 |
. 2
| |
| 49 | 41, 47, 48 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: mapsnf1o2 7905 mapsnf1o3 7906 coe1sfi 19583 evl1var 19700 pf1mpf 19716 pf1ind 19719 deg1val 23856 |
| Copyright terms: Public domain | W3C validator |