MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2 Structured version   Visualization version   Unicode version

Theorem coe1mul2 19639
Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul2.s  |-  S  =  (PwSer1 `  R )
coe1mul2.t  |-  .xb  =  ( .r `  S )
coe1mul2.u  |-  .x.  =  ( .r `  R )
coe1mul2.b  |-  B  =  ( Base `  S
)
Assertion
Ref Expression
coe1mul2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .xb  G ) )  =  ( k  e.  NN0  |->  ( R 
gsumg  ( x  e.  (
0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) ) ) )
Distinct variable groups:    x, k, B    k, F, x    .x. , k, x    k, G, x    R, k, x    .xb , k
Allowed substitution hints:    S( x, k)    .xb (
x)

Proof of Theorem coe1mul2
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6094 . . . . 5  |-  ( k  e.  NN0  ->  ( 1o 
X.  { k } ) : 1o --> NN0 )
2 nn0ex 11298 . . . . . 6  |-  NN0  e.  _V
3 1on 7567 . . . . . . 7  |-  1o  e.  On
43elexi 3213 . . . . . 6  |-  1o  e.  _V
52, 4elmap 7886 . . . . 5  |-  ( ( 1o  X.  { k } )  e.  ( NN0  ^m  1o )  <-> 
( 1o  X.  {
k } ) : 1o --> NN0 )
61, 5sylibr 224 . . . 4  |-  ( k  e.  NN0  ->  ( 1o 
X.  { k } )  e.  ( NN0 
^m  1o ) )
76adantl 482 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( 1o  X.  { k } )  e.  ( NN0  ^m  1o ) )
8 eqidd 2623 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
k  e.  NN0  |->  ( 1o 
X.  { k } ) )  =  ( k  e.  NN0  |->  ( 1o 
X.  { k } ) ) )
9 eqid 2622 . . . 4  |-  ( 1o mPwSer  R )  =  ( 1o mPwSer  R )
10 coe1mul2.s . . . . 5  |-  S  =  (PwSer1 `  R )
11 coe1mul2.b . . . . 5  |-  B  =  ( Base `  S
)
1210, 11, 9psr1bas2 19560 . . . 4  |-  B  =  ( Base `  ( 1o mPwSer  R ) )
13 coe1mul2.u . . . 4  |-  .x.  =  ( .r `  R )
14 coe1mul2.t . . . . 5  |-  .xb  =  ( .r `  S )
1510, 9, 14psr1mulr 19594 . . . 4  |-  .xb  =  ( .r `  ( 1o mPwSer  R ) )
16 psr1baslem 19555 . . . 4  |-  ( NN0 
^m  1o )  =  { a  e.  ( NN0  ^m  1o )  |  ( `' a
" NN )  e. 
Fin }
17 simp2 1062 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  B )
18 simp3 1063 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  B )
199, 12, 13, 15, 16, 17, 18psrmulfval 19385 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( b  e.  ( NN0  ^m  1o ) 
|->  ( R  gsumg  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
b }  |->  ( ( F `  c ) 
.x.  ( G `  ( b  oF  -  c ) ) ) ) ) ) )
20 breq2 4657 . . . . . 6  |-  ( b  =  ( 1o  X.  { k } )  ->  ( d  oR  <_  b  <->  d  oR  <_  ( 1o  X.  { k } ) ) )
2120rabbidv 3189 . . . . 5  |-  ( b  =  ( 1o  X.  { k } )  ->  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  b }  =  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )
22 oveq1 6657 . . . . . . 7  |-  ( b  =  ( 1o  X.  { k } )  ->  ( b  oF  -  c )  =  ( ( 1o 
X.  { k } )  oF  -  c ) )
2322fveq2d 6195 . . . . . 6  |-  ( b  =  ( 1o  X.  { k } )  ->  ( G `  ( b  oF  -  c ) )  =  ( G `  ( ( 1o  X.  { k } )  oF  -  c
) ) )
2423oveq2d 6666 . . . . 5  |-  ( b  =  ( 1o  X.  { k } )  ->  ( ( F `
 c )  .x.  ( G `  ( b  oF  -  c
) ) )  =  ( ( F `  c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) )
2521, 24mpteq12dv 4733 . . . 4  |-  ( b  =  ( 1o  X.  { k } )  ->  ( c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  b }  |->  ( ( F `  c
)  .x.  ( G `  ( b  oF  -  c ) ) ) )  =  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o 
X.  { k } ) }  |->  ( ( F `  c ) 
.x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c
) ) ) ) )
2625oveq2d 6666 . . 3  |-  ( b  =  ( 1o  X.  { k } )  ->  ( R  gsumg  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  b }  |->  ( ( F `  c
)  .x.  ( G `  ( b  oF  -  c ) ) ) ) )  =  ( R  gsumg  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } 
|->  ( ( F `  c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) ) ) )
277, 8, 19, 26fmptco 6396 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
( F  .xb  G
)  o.  ( k  e.  NN0  |->  ( 1o 
X.  { k } ) ) )  =  ( k  e.  NN0  |->  ( R  gsumg  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } 
|->  ( ( F `  c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) ) ) ) )
2810psr1ring 19617 . . . 4  |-  ( R  e.  Ring  ->  S  e. 
Ring )
2911, 14ringcl 18561 . . . 4  |-  ( ( S  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  e.  B )
3028, 29syl3an1 1359 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  e.  B )
31 eqid 2622 . . . 4  |-  (coe1 `  ( F  .xb  G ) )  =  (coe1 `  ( F  .xb  G ) )
32 eqid 2622 . . . 4  |-  ( k  e.  NN0  |->  ( 1o 
X.  { k } ) )  =  ( k  e.  NN0  |->  ( 1o 
X.  { k } ) )
3331, 11, 10, 32coe1fval3 19578 . . 3  |-  ( ( F  .xb  G )  e.  B  ->  (coe1 `  ( F  .xb  G ) )  =  ( ( F 
.xb  G )  o.  ( k  e.  NN0  |->  ( 1o  X.  { k } ) ) ) )
3430, 33syl 17 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .xb  G ) )  =  ( ( F  .xb  G )  o.  ( k  e.  NN0  |->  ( 1o  X.  { k } ) ) ) )
35 eqid 2622 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
36 eqid 2622 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
37 simpl1 1064 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  R  e.  Ring )
38 ringcmn 18581 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. CMnd
)
3937, 38syl 17 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  R  e. CMnd )
40 fzfi 12771 . . . . . 6  |-  ( 0 ... k )  e. 
Fin
4140a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( 0 ... k )  e.  Fin )
42 simpll1 1100 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  R  e.  Ring )
43 simpll2 1101 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  F  e.  B )
44 eqid 2622 . . . . . . . . . 10  |-  (coe1 `  F
)  =  (coe1 `  F
)
4544, 11, 10, 35coe1f2 19579 . . . . . . . . 9  |-  ( F  e.  B  ->  (coe1 `  F ) : NN0 --> (
Base `  R )
)
4643, 45syl 17 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  (coe1 `  F ) : NN0 --> (
Base `  R )
)
47 elfznn0 12433 . . . . . . . . 9  |-  ( x  e.  ( 0 ... k )  ->  x  e.  NN0 )
4847adantl 482 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  x  e.  NN0 )
4946, 48ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  (
(coe1 `  F ) `  x )  e.  (
Base `  R )
)
50 simpll3 1102 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  G  e.  B )
51 eqid 2622 . . . . . . . . . 10  |-  (coe1 `  G
)  =  (coe1 `  G
)
5251, 11, 10, 35coe1f2 19579 . . . . . . . . 9  |-  ( G  e.  B  ->  (coe1 `  G ) : NN0 --> (
Base `  R )
)
5350, 52syl 17 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  (coe1 `  G ) : NN0 --> (
Base `  R )
)
54 fznn0sub 12373 . . . . . . . . 9  |-  ( x  e.  ( 0 ... k )  ->  (
k  -  x )  e.  NN0 )
5554adantl 482 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  (
k  -  x )  e.  NN0 )
5653, 55ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  (
(coe1 `  G ) `  ( k  -  x
) )  e.  (
Base `  R )
)
5735, 13ringcl 18561 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
(coe1 `  F ) `  x )  e.  (
Base `  R )  /\  ( (coe1 `  G ) `  ( k  -  x
) )  e.  (
Base `  R )
)  ->  ( (
(coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) )  e.  ( Base `  R
) )
5842, 49, 56, 57syl3anc 1326 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  x  e.  ( 0 ... k
) )  ->  (
( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) )  e.  ( Base `  R
) )
59 eqid 2622 . . . . . 6  |-  ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  =  ( x  e.  ( 0 ... k
)  |->  ( ( (coe1 `  F ) `  x
)  .x.  ( (coe1 `  G ) `  (
k  -  x ) ) ) )
6058, 59fmptd 6385 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( x  e.  ( 0 ... k
)  |->  ( ( (coe1 `  F ) `  x
)  .x.  ( (coe1 `  G ) `  (
k  -  x ) ) ) ) : ( 0 ... k
) --> ( Base `  R
) )
6140elexi 3213 . . . . . . . . 9  |-  ( 0 ... k )  e. 
_V
6261mptex 6486 . . . . . . . 8  |-  ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  e.  _V
63 funmpt 5926 . . . . . . . 8  |-  Fun  (
x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )
64 fvex 6201 . . . . . . . 8  |-  ( 0g
`  R )  e. 
_V
6562, 63, 643pm3.2i 1239 . . . . . . 7  |-  ( ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  e.  _V  /\  Fun  ( x  e.  (
0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  /\  ( 0g `  R )  e.  _V )
66 suppssdm 7308 . . . . . . . . 9  |-  ( ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) supp  ( 0g `  R
) )  C_  dom  ( x  e.  (
0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )
6759dmmptss 5631 . . . . . . . . 9  |-  dom  (
x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) 
C_  ( 0 ... k )
6866, 67sstri 3612 . . . . . . . 8  |-  ( ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) supp  ( 0g `  R
) )  C_  (
0 ... k )
6940, 68pm3.2i 471 . . . . . . 7  |-  ( ( 0 ... k )  e.  Fin  /\  (
( x  e.  ( 0 ... k ) 
|->  ( ( (coe1 `  F
) `  x )  .x.  ( (coe1 `  G ) `  ( k  -  x
) ) ) ) supp  ( 0g `  R
) )  C_  (
0 ... k ) )
70 suppssfifsupp 8290 . . . . . . 7  |-  ( ( ( ( x  e.  ( 0 ... k
)  |->  ( ( (coe1 `  F ) `  x
)  .x.  ( (coe1 `  G ) `  (
k  -  x ) ) ) )  e. 
_V  /\  Fun  ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  /\  ( 0g `  R )  e.  _V )  /\  ( ( 0 ... k )  e. 
Fin  /\  ( (
x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) supp  ( 0g `  R
) )  C_  (
0 ... k ) ) )  ->  ( x  e.  ( 0 ... k
)  |->  ( ( (coe1 `  F ) `  x
)  .x.  ( (coe1 `  G ) `  (
k  -  x ) ) ) ) finSupp  ( 0g `  R ) )
7165, 69, 70mp2an 708 . . . . . 6  |-  ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) finSupp 
( 0g `  R
)
7271a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( x  e.  ( 0 ... k
)  |->  ( ( (coe1 `  F ) `  x
)  .x.  ( (coe1 `  G ) `  (
k  -  x ) ) ) ) finSupp  ( 0g `  R ) )
73 eqid 2622 . . . . . . 7  |-  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o 
X.  { k } ) }  =  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) }
7473coe1mul2lem2 19638 . . . . . 6  |-  ( k  e.  NN0  ->  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( c `  (/) ) ) : {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } -1-1-onto-> ( 0 ... k ) )
7574adantl 482 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( c `  (/) ) ) : {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } -1-1-onto-> ( 0 ... k ) )
7635, 36, 39, 41, 60, 72, 75gsumf1o 18317 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( R  gsumg  ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) )  =  ( R 
gsumg  ( ( x  e.  ( 0 ... k
)  |->  ( ( (coe1 `  F ) `  x
)  .x.  ( (coe1 `  G ) `  (
k  -  x ) ) ) )  o.  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } 
|->  ( c `  (/) ) ) ) ) )
77 breq1 4656 . . . . . . . . . . 11  |-  ( d  =  c  ->  (
d  oR  <_ 
( 1o  X.  {
k } )  <->  c  oR  <_  ( 1o  X.  { k } ) ) )
7877elrab 3363 . . . . . . . . . 10  |-  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  <->  ( c  e.  ( NN0  ^m  1o )  /\  c  oR  <_  ( 1o  X.  { k } ) ) )
7978simprbi 480 . . . . . . . . 9  |-  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  ->  c  oR  <_  ( 1o  X.  { k } ) )
8079adantl 482 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  c  oR  <_  ( 1o 
X.  { k } ) )
81 simplr 792 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  k  e.  NN0 )
82 elrabi 3359 . . . . . . . . . 10  |-  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  ->  c  e.  ( NN0  ^m  1o ) )
8382adantl 482 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  c  e.  ( NN0  ^m  1o ) )
84 coe1mul2lem1 19637 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  c  e.  ( NN0  ^m  1o ) )  -> 
( c  oR  <_  ( 1o  X.  { k } )  <-> 
( c `  (/) )  e.  ( 0 ... k
) ) )
8581, 83, 84syl2anc 693 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
c  oR  <_ 
( 1o  X.  {
k } )  <->  ( c `  (/) )  e.  ( 0 ... k ) ) )
8680, 85mpbid 222 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
c `  (/) )  e.  ( 0 ... k
) )
87 eqidd 2623 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( c `  (/) ) )  =  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o 
X.  { k } ) }  |->  ( c `
 (/) ) ) )
88 eqidd 2623 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( x  e.  ( 0 ... k
)  |->  ( ( (coe1 `  F ) `  x
)  .x.  ( (coe1 `  G ) `  (
k  -  x ) ) ) )  =  ( x  e.  ( 0 ... k ) 
|->  ( ( (coe1 `  F
) `  x )  .x.  ( (coe1 `  G ) `  ( k  -  x
) ) ) ) )
89 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( c `  (/) )  ->  ( (coe1 `  F ) `  x
)  =  ( (coe1 `  F ) `  (
c `  (/) ) ) )
90 oveq2 6658 . . . . . . . . 9  |-  ( x  =  ( c `  (/) )  ->  ( k  -  x )  =  ( k  -  ( c `
 (/) ) ) )
9190fveq2d 6195 . . . . . . . 8  |-  ( x  =  ( c `  (/) )  ->  ( (coe1 `  G ) `  (
k  -  x ) )  =  ( (coe1 `  G ) `  (
k  -  ( c `
 (/) ) ) ) )
9289, 91oveq12d 6668 . . . . . . 7  |-  ( x  =  ( c `  (/) )  ->  ( (
(coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) )  =  ( ( (coe1 `  F
) `  ( c `  (/) ) )  .x.  ( (coe1 `  G ) `  ( k  -  (
c `  (/) ) ) ) ) )
9386, 87, 88, 92fmptco 6396 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  o.  ( c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( c `  (/) ) ) )  =  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } 
|->  ( ( (coe1 `  F
) `  ( c `  (/) ) )  .x.  ( (coe1 `  G ) `  ( k  -  (
c `  (/) ) ) ) ) ) )
94 simpll2 1101 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  F  e.  B )
9544fvcoe1 19577 . . . . . . . . 9  |-  ( ( F  e.  B  /\  c  e.  ( NN0  ^m  1o ) )  -> 
( F `  c
)  =  ( (coe1 `  F ) `  (
c `  (/) ) ) )
9694, 83, 95syl2anc 693 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  ( F `  c )  =  ( (coe1 `  F
) `  ( c `  (/) ) ) )
97 df1o2 7572 . . . . . . . . . . . . . 14  |-  1o  =  { (/) }
98 0ex 4790 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
9997, 2, 98mapsnconst 7903 . . . . . . . . . . . . 13  |-  ( c  e.  ( NN0  ^m  1o )  ->  c  =  ( 1o  X.  {
( c `  (/) ) } ) )
10083, 99syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  c  =  ( 1o  X.  { ( c `  (/) ) } ) )
101100oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
( 1o  X.  {
k } )  oF  -  c )  =  ( ( 1o 
X.  { k } )  oF  -  ( 1o  X.  { ( c `  (/) ) } ) ) )
1023a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  1o  e.  On )
103 vex 3203 . . . . . . . . . . . . 13  |-  k  e. 
_V
104103a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  k  e.  _V )
105 fvexd 6203 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
c `  (/) )  e. 
_V )
106102, 104, 105ofc12 6922 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
( 1o  X.  {
k } )  oF  -  ( 1o 
X.  { ( c `
 (/) ) } ) )  =  ( 1o 
X.  { ( k  -  ( c `  (/) ) ) } ) )
107101, 106eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
( 1o  X.  {
k } )  oF  -  c )  =  ( 1o  X.  { ( k  -  ( c `  (/) ) ) } ) )
108107fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) )  =  ( G `  ( 1o  X.  { ( k  -  ( c `  (/) ) ) } ) ) )
109 simpll3 1102 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  G  e.  B )
110 fznn0sub 12373 . . . . . . . . . . 11  |-  ( ( c `  (/) )  e.  ( 0 ... k
)  ->  ( k  -  ( c `  (/) ) )  e.  NN0 )
11186, 110syl 17 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
k  -  ( c `
 (/) ) )  e. 
NN0 )
11251coe1fv 19576 . . . . . . . . . 10  |-  ( ( G  e.  B  /\  ( k  -  (
c `  (/) ) )  e.  NN0 )  -> 
( (coe1 `  G ) `  ( k  -  (
c `  (/) ) ) )  =  ( G `
 ( 1o  X.  { ( k  -  ( c `  (/) ) ) } ) ) )
113109, 111, 112syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
(coe1 `  G ) `  ( k  -  (
c `  (/) ) ) )  =  ( G `
 ( 1o  X.  { ( k  -  ( c `  (/) ) ) } ) ) )
114108, 113eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) )  =  ( (coe1 `  G ) `  ( k  -  (
c `  (/) ) ) ) )
11596, 114oveq12d 6668 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  k  e.  NN0 )  /\  c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) } )  ->  (
( F `  c
)  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c
) ) )  =  ( ( (coe1 `  F
) `  ( c `  (/) ) )  .x.  ( (coe1 `  G ) `  ( k  -  (
c `  (/) ) ) ) ) )
116115mpteq2dva 4744 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( ( F `
 c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) )  =  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o 
X.  { k } ) }  |->  ( ( (coe1 `  F ) `  ( c `  (/) ) ) 
.x.  ( (coe1 `  G
) `  ( k  -  ( c `  (/) ) ) ) ) ) )
11793, 116eqtr4d 2659 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  o.  ( c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( c `  (/) ) ) )  =  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } 
|->  ( ( F `  c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) ) )
118117oveq2d 6666 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( R  gsumg  ( ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) )  o.  ( c  e. 
{ d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( c `  (/) ) ) ) )  =  ( R  gsumg  ( c  e.  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }  |->  ( ( F `
 c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) ) ) )
11976, 118eqtrd 2656 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  k  e.  NN0 )  ->  ( R  gsumg  ( x  e.  ( 0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) )  =  ( R 
gsumg  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } 
|->  ( ( F `  c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) ) ) )
120119mpteq2dva 4744 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
k  e.  NN0  |->  ( R 
gsumg  ( x  e.  (
0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) ) )  =  ( k  e.  NN0  |->  ( R 
gsumg  ( c  e.  {
d  e.  ( NN0 
^m  1o )  |  d  oR  <_ 
( 1o  X.  {
k } ) } 
|->  ( ( F `  c )  .x.  ( G `  ( ( 1o  X.  { k } )  oF  -  c ) ) ) ) ) ) )
12127, 34, 1203eqtr4d 2666 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .xb  G ) )  =  ( k  e.  NN0  |->  ( R 
gsumg  ( x  e.  (
0 ... k )  |->  ( ( (coe1 `  F ) `  x )  .x.  (
(coe1 `  G ) `  ( k  -  x
) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    o. ccom 5118   Oncon0 5723   Fun wfun 5882   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   supp csupp 7295   1oc1o 7553    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   0cc0 9936    <_ cle 10075    - cmin 10266   NN0cn0 11292   ...cfz 12326   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193   Ringcrg 18547   mPwSer cmps 19351  PwSer1cps1 19545  coe1cco1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-psr 19356  df-opsr 19360  df-psr1 19550  df-coe1 19553
This theorem is referenced by:  coe1mul  19640
  Copyright terms: Public domain W3C validator