MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem2 Structured version   Visualization version   Unicode version

Theorem hypcgrlem2 25692
Description: Lemma for hypcgr 25693, case where triangles share one vertex  B. (Contributed by Thierry Arnoux, 16-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p  |-  P  =  ( Base `  G
)
hypcgr.m  |-  .-  =  ( dist `  G )
hypcgr.i  |-  I  =  (Itv `  G )
hypcgr.g  |-  ( ph  ->  G  e. TarskiG )
hypcgr.h  |-  ( ph  ->  GDimTarskiG 2 )
hypcgr.a  |-  ( ph  ->  A  e.  P )
hypcgr.b  |-  ( ph  ->  B  e.  P )
hypcgr.c  |-  ( ph  ->  C  e.  P )
hypcgr.d  |-  ( ph  ->  D  e.  P )
hypcgr.e  |-  ( ph  ->  E  e.  P )
hypcgr.f  |-  ( ph  ->  F  e.  P )
hypcgr.1  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
hypcgr.2  |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )
hypcgr.3  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
hypcgr.4  |-  ( ph  ->  ( B  .-  C
)  =  ( E 
.-  F ) )
hypcgrlem2.b  |-  ( ph  ->  B  =  E )
hypcgrlem2.s  |-  S  =  ( (lInvG `  G
) `  ( ( C (midG `  G ) F ) (LineG `  G ) B ) )
Assertion
Ref Expression
hypcgrlem2  |-  ( ph  ->  ( A  .-  C
)  =  ( D 
.-  F ) )

Proof of Theorem hypcgrlem2
StepHypRef Expression
1 hypcgr.p . . . 4  |-  P  =  ( Base `  G
)
2 hypcgr.m . . . 4  |-  .-  =  ( dist `  G )
3 hypcgr.i . . . 4  |-  I  =  (Itv `  G )
4 hypcgr.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  G  e. TarskiG )
6 hypcgr.h . . . . 5  |-  ( ph  ->  GDimTarskiG 2 )
76adantr 481 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  GDimTarskiG 2 )
8 hypcgr.a . . . . 5  |-  ( ph  ->  A  e.  P )
98adantr 481 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  A  e.  P )
10 hypcgr.b . . . . 5  |-  ( ph  ->  B  e.  P )
1110adantr 481 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  B  e.  P )
12 hypcgr.c . . . . 5  |-  ( ph  ->  C  e.  P )
1312adantr 481 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  C  e.  P )
14 eqid 2622 . . . . 5  |-  (LineG `  G )  =  (LineG `  G )
15 eqid 2622 . . . . 5  |-  (pInvG `  G )  =  (pInvG `  G )
16 eqid 2622 . . . . 5  |-  ( (pInvG `  G ) `  B
)  =  ( (pInvG `  G ) `  B
)
17 hypcgr.d . . . . . 6  |-  ( ph  ->  D  e.  P )
1817adantr 481 . . . . 5  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  D  e.  P )
191, 2, 3, 14, 15, 5, 11, 16, 18mircl 25556 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
(pInvG `  G ) `  B ) `  D
)  e.  P )
20 hypcgr.e . . . . 5  |-  ( ph  ->  E  e.  P )
2120adantr 481 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  E  e.  P )
22 hypcgr.1 . . . . 5  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
2322adantr 481 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  <" A B C ">  e.  (∟G `  G ) )
24 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
(pInvG `  G ) `  B ) `  D
)  =  ( ( (pInvG `  G ) `  B ) `  D
) )
25 hypcgrlem2.b . . . . . . . . 9  |-  ( ph  ->  B  =  E )
2625adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  B  =  E )
271, 2, 3, 14, 15, 5, 11, 16, 21mirinv 25561 . . . . . . . 8  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
( (pInvG `  G
) `  B ) `  E )  =  E  <-> 
B  =  E ) )
2826, 27mpbird 247 . . . . . . 7  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
(pInvG `  G ) `  B ) `  E
)  =  E )
2928eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  E  =  ( ( (pInvG `  G ) `  B
) `  E )
)
30 hypcgr.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  P )
3130adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  F  e.  P )
321, 2, 3, 5, 7, 13, 31midcom 25674 . . . . . . . 8  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( C
(midG `  G ) F )  =  ( F (midG `  G
) C ) )
33 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( C
(midG `  G ) F )  =  B )
3432, 33eqtr3d 2658 . . . . . . 7  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( F
(midG `  G ) C )  =  B )
351, 2, 3, 5, 7, 31, 13, 15, 11ismidb 25670 . . . . . . 7  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( C  =  ( ( (pInvG `  G ) `  B
) `  F )  <->  ( F (midG `  G
) C )  =  B ) )
3634, 35mpbird 247 . . . . . 6  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  C  =  ( ( (pInvG `  G ) `  B
) `  F )
)
3724, 29, 36s3eqd 13609 . . . . 5  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  <" (
( (pInvG `  G
) `  B ) `  D ) E C ">  =  <" ( ( (pInvG `  G ) `  B
) `  D )
( ( (pInvG `  G ) `  B
) `  E )
( ( (pInvG `  G ) `  B
) `  F ) "> )
38 hypcgr.2 . . . . . . 7  |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )
3938adantr 481 . . . . . 6  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  <" D E F ">  e.  (∟G `  G ) )
401, 2, 3, 14, 15, 5, 18, 21, 31, 39, 16, 11mirrag 25596 . . . . 5  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  <" (
( (pInvG `  G
) `  B ) `  D ) ( ( (pInvG `  G ) `  B ) `  E
) ( ( (pInvG `  G ) `  B
) `  F ) ">  e.  (∟G `  G
) )
4137, 40eqeltrd 2701 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  <" (
( (pInvG `  G
) `  B ) `  D ) E C ">  e.  (∟G `  G ) )
42 hypcgr.3 . . . . . 6  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
4342adantr 481 . . . . 5  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( A  .-  B )  =  ( D  .-  E ) )
441, 2, 3, 14, 15, 5, 11, 16, 18, 21miriso 25565 . . . . 5  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
( (pInvG `  G
) `  B ) `  D )  .-  (
( (pInvG `  G
) `  B ) `  E ) )  =  ( D  .-  E
) )
4528oveq2d 6666 . . . . 5  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
( (pInvG `  G
) `  B ) `  D )  .-  (
( (pInvG `  G
) `  B ) `  E ) )  =  ( ( ( (pInvG `  G ) `  B
) `  D )  .-  E ) )
4643, 44, 453eqtr2d 2662 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( A  .-  B )  =  ( ( ( (pInvG `  G ) `  B
) `  D )  .-  E ) )
4726oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( B  .-  C )  =  ( E  .-  C ) )
48 eqid 2622 . . . 4  |-  ( (lInvG `  G ) `  (
( A (midG `  G ) ( ( (pInvG `  G ) `  B ) `  D
) ) (LineG `  G ) B ) )  =  ( (lInvG `  G ) `  (
( A (midG `  G ) ( ( (pInvG `  G ) `  B ) `  D
) ) (LineG `  G ) B ) )
49 eqidd 2623 . . . 4  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  C  =  C )
501, 2, 3, 5, 7, 9, 11, 13, 19, 21, 13, 23, 41, 46, 47, 26, 48, 49hypcgrlem1 25691 . . 3  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( A  .-  C )  =  ( ( ( (pInvG `  G ) `  B
) `  D )  .-  C ) )
5136oveq2d 6666 . . 3  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
( (pInvG `  G
) `  B ) `  D )  .-  C
)  =  ( ( ( (pInvG `  G
) `  B ) `  D )  .-  (
( (pInvG `  G
) `  B ) `  F ) ) )
521, 2, 3, 14, 15, 5, 11, 16, 18, 31miriso 25565 . . 3  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( (
( (pInvG `  G
) `  B ) `  D )  .-  (
( (pInvG `  G
) `  B ) `  F ) )  =  ( D  .-  F
) )
5350, 51, 523eqtrd 2660 . 2  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =  B )  ->  ( A  .-  C )  =  ( D  .-  F ) )
544ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  G  e. TarskiG )
556ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  GDimTarskiG 2
)
568ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  A  e.  P )
5710ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  B  e.  P )
5812ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  C  e.  P )
5917ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  D  e.  P )
6020ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  E  e.  P )
6130ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  F  e.  P )
6222ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  <" A B C ">  e.  (∟G `  G ) )
6338ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  <" D E F ">  e.  (∟G `  G ) )
6442ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  ( A  .-  B )  =  ( D  .-  E
) )
65 hypcgr.4 . . . . 5  |-  ( ph  ->  ( B  .-  C
)  =  ( E 
.-  F ) )
6665ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  ( B  .-  C )  =  ( E  .-  F
) )
6725ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  B  =  E )
68 eqid 2622 . . . 4  |-  ( (lInvG `  G ) `  (
( A (midG `  G ) D ) (LineG `  G ) B ) )  =  ( (lInvG `  G
) `  ( ( A (midG `  G ) D ) (LineG `  G ) B ) )
69 simpr 477 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  C  =  F )
701, 2, 3, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69hypcgrlem1 25691 . . 3  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  F )  ->  ( A  .-  C )  =  ( D  .-  F
) )
714ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  G  e. TarskiG )
726ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  GDimTarskiG 2 )
738ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  A  e.  P )
7410ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  B  e.  P )
7512ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  C  e.  P )
76 hypcgrlem2.s . . . . . 6  |-  S  =  ( (lInvG `  G
) `  ( ( C (midG `  G ) F ) (LineG `  G ) B ) )
7730ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  F  e.  P )
781, 2, 3, 71, 72, 75, 77midcl 25669 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  e.  P
)
79 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  =/=  B
)
801, 3, 14, 71, 78, 74, 79tgelrnln 25525 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( ( C (midG `  G ) F ) (LineG `  G ) B )  e.  ran  (LineG `  G ) )
8117ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  D  e.  P )
821, 2, 3, 71, 72, 76, 14, 80, 81lmicl 25678 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( S `  D )  e.  P
)
8320ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  E  e.  P )
841, 2, 3, 71, 72, 76, 14, 80, 83lmicl 25678 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( S `  E )  e.  P
)
851, 2, 3, 71, 72, 76, 14, 80, 77lmicl 25678 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( S `  F )  e.  P
)
8622ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  <" A B C ">  e.  (∟G `  G ) )
871, 2, 3, 71, 72, 76, 14, 80lmimot 25690 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  S  e.  ( GIsmt G ) )
8838ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  <" D E F ">  e.  (∟G `  G ) )
891, 2, 3, 14, 15, 71, 81, 83, 77, 87, 88motrag 25603 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  <" ( S `  D )
( S `  E
) ( S `  F ) ">  e.  (∟G `  G )
)
9042ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( A  .-  B )  =  ( D  .-  E ) )
911, 2, 3, 71, 72, 76, 14, 80, 81, 83lmiiso 25689 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( ( S `  D )  .-  ( S `  E
) )  =  ( D  .-  E ) )
9290, 91eqtr4d 2659 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( A  .-  B )  =  ( ( S `  D
)  .-  ( S `  E ) ) )
9365ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( B  .-  C )  =  ( E  .-  F ) )
941, 2, 3, 71, 72, 76, 14, 80, 83, 77lmiiso 25689 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( ( S `  E )  .-  ( S `  F
) )  =  ( E  .-  F ) )
9593, 94eqtr4d 2659 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( B  .-  C )  =  ( ( S `  E
)  .-  ( S `  F ) ) )
961, 3, 14, 71, 78, 74, 79tglinerflx2 25529 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  B  e.  ( ( C (midG `  G ) F ) (LineG `  G ) B ) )
971, 2, 3, 71, 72, 76, 14, 80, 74lmiinv 25684 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( ( S `  B )  =  B  <->  B  e.  (
( C (midG `  G ) F ) (LineG `  G ) B ) ) )
9896, 97mpbird 247 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( S `  B )  =  B )
9925ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  B  =  E )
10099fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( S `  B )  =  ( S `  E ) )
10198, 100eqtr3d 2658 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  B  =  ( S `  E ) )
102 eqid 2622 . . . . 5  |-  ( (lInvG `  G ) `  (
( A (midG `  G ) ( S `
 D ) ) (LineG `  G ) B ) )  =  ( (lInvG `  G
) `  ( ( A (midG `  G )
( S `  D
) ) (LineG `  G ) B ) )
1031, 2, 3, 71, 72, 75, 77midcom 25674 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  =  ( F (midG `  G
) C ) )
1041, 3, 14, 71, 78, 74, 79tglinerflx1 25528 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  e.  ( ( C (midG `  G ) F ) (LineG `  G ) B ) )
105103, 104eqeltrrd 2702 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( F
(midG `  G ) C )  e.  ( ( C (midG `  G ) F ) (LineG `  G ) B ) )
106 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  C  =/=  F )
107106necomd 2849 . . . . . . . . 9  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  F  =/=  C )
1081, 3, 14, 71, 77, 75, 107tgelrnln 25525 . . . . . . . 8  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( F
(LineG `  G ) C )  e.  ran  (LineG `  G ) )
1091, 2, 3, 71, 72, 75, 77midbtwn 25671 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  e.  ( C I F ) )
1101, 2, 3, 71, 75, 78, 77, 109tgbtwncom 25383 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  e.  ( F I C ) )
1111, 3, 14, 71, 77, 75, 78, 107, 110btwnlng1 25514 . . . . . . . . 9  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  e.  ( F (LineG `  G
) C ) )
112104, 111elind 3798 . . . . . . . 8  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  e.  ( ( ( C (midG `  G ) F ) (LineG `  G ) B )  i^i  ( F (LineG `  G ) C ) ) )
1131, 3, 14, 71, 77, 75, 107tglinerflx2 25529 . . . . . . . 8  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  C  e.  ( F (LineG `  G
) C ) )
11479necomd 2849 . . . . . . . 8  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  B  =/=  ( C (midG `  G
) F ) )
1154ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  G  e. TarskiG )
11612ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  C  e.  P
)
11730ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  F  e.  P
)
1186ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  GDimTarskiG 2 )
119 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  C  =  ( C (midG `  G
) F ) )
120119eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  ( C (midG `  G ) F )  =  C )
1211, 2, 3, 115, 118, 116, 117, 120midcgr 25672 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  ( C  .-  C )  =  ( C  .-  F ) )
122121eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  ( C  .-  F )  =  ( C  .-  C ) )
1231, 2, 3, 115, 116, 117, 116, 122axtgcgrid 25362 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =  ( C (midG `  G
) F ) )  ->  C  =  F )
124123ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =/=  B
)  ->  ( C  =  ( C (midG `  G ) F )  ->  C  =  F ) )
125124necon3d 2815 . . . . . . . . 9  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =/=  B
)  ->  ( C  =/=  F  ->  C  =/=  ( C (midG `  G
) F ) ) )
126125imp 445 . . . . . . . 8  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  C  =/=  ( C (midG `  G
) F ) )
12799eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  E  =  B )
128 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C
(midG `  G ) F )  =  ( C (midG `  G
) F ) )
1291, 2, 3, 71, 72, 75, 77, 15, 78ismidb 25670 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( F  =  ( ( (pInvG `  G ) `  ( C (midG `  G ) F ) ) `  C )  <->  ( C
(midG `  G ) F )  =  ( C (midG `  G
) F ) ) )
130128, 129mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  F  =  ( ( (pInvG `  G ) `  ( C (midG `  G ) F ) ) `  C ) )
131127, 130oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( E  .-  F )  =  ( B  .-  ( ( (pInvG `  G ) `  ( C (midG `  G ) F ) ) `  C ) ) )
13293, 131eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( B  .-  C )  =  ( B  .-  ( ( (pInvG `  G ) `  ( C (midG `  G ) F ) ) `  C ) ) )
1331, 2, 3, 14, 15, 71, 74, 78, 75israg 25592 . . . . . . . . 9  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( <" B ( C (midG `  G ) F ) C ">  e.  (∟G `  G )  <->  ( B  .-  C )  =  ( B  .-  ( ( (pInvG `  G ) `  ( C (midG `  G ) F ) ) `  C ) ) ) )
134132, 133mpbird 247 . . . . . . . 8  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  <" B
( C (midG `  G ) F ) C ">  e.  (∟G `  G ) )
1351, 2, 3, 14, 71, 80, 108, 112, 96, 113, 114, 126, 134ragperp 25612 . . . . . . 7  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( ( C (midG `  G ) F ) (LineG `  G ) B ) (⟂G `  G )
( F (LineG `  G ) C ) )
136135orcd 407 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( (
( C (midG `  G ) F ) (LineG `  G ) B ) (⟂G `  G
) ( F (LineG `  G ) C )  \/  F  =  C ) )
1371, 2, 3, 71, 72, 76, 14, 80, 77, 75islmib 25679 . . . . . 6  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( C  =  ( S `  F )  <->  ( ( F (midG `  G ) C )  e.  ( ( C (midG `  G ) F ) (LineG `  G ) B )  /\  (
( ( C (midG `  G ) F ) (LineG `  G ) B ) (⟂G `  G
) ( F (LineG `  G ) C )  \/  F  =  C ) ) ) )
138105, 136, 137mpbir2and 957 . . . . 5  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  C  =  ( S `  F ) )
1391, 2, 3, 71, 72, 73, 74, 75, 82, 84, 85, 86, 89, 92, 95, 101, 102, 138hypcgrlem1 25691 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( A  .-  C )  =  ( ( S `  D
)  .-  ( S `  F ) ) )
1401, 2, 3, 71, 72, 76, 14, 80, 81, 77lmiiso 25689 . . . 4  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( ( S `  D )  .-  ( S `  F
) )  =  ( D  .-  F ) )
141139, 140eqtrd 2656 . . 3  |-  ( ( ( ph  /\  ( C (midG `  G ) F )  =/=  B
)  /\  C  =/=  F )  ->  ( A  .-  C )  =  ( D  .-  F ) )
14270, 141pm2.61dane 2881 . 2  |-  ( (
ph  /\  ( C
(midG `  G ) F )  =/=  B
)  ->  ( A  .-  C )  =  ( D  .-  F ) )
14353, 142pm2.61dane 2881 1  |-  ( ph  ->  ( A  .-  C
)  =  ( D 
.-  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   2c2 11070   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590  midGcmid 25664  lInvGclmi 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-ismt 25428  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591  df-mid 25666  df-lmi 25667
This theorem is referenced by:  hypcgr  25693
  Copyright terms: Public domain W3C validator