MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimid Structured version   Visualization version   Unicode version

Theorem lmimid 25686
Description: If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismid.p  |-  P  =  ( Base `  G
)
ismid.d  |-  .-  =  ( dist `  G )
ismid.i  |-  I  =  (Itv `  G )
ismid.g  |-  ( ph  ->  G  e. TarskiG )
ismid.1  |-  ( ph  ->  GDimTarskiG 2 )
lmif.m  |-  M  =  ( (lInvG `  G
) `  D )
lmif.l  |-  L  =  (LineG `  G )
lmif.d  |-  ( ph  ->  D  e.  ran  L
)
lmicl.1  |-  ( ph  ->  A  e.  P )
lmimid.s  |-  S  =  ( (pInvG `  G
) `  B )
lmimid.r  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
lmimid.a  |-  ( ph  ->  A  e.  D )
lmimid.b  |-  ( ph  ->  B  e.  D )
lmimid.c  |-  ( ph  ->  C  e.  P )
lmimid.d  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
lmimid  |-  ( ph  ->  ( M `  C
)  =  ( S `
 C ) )

Proof of Theorem lmimid
StepHypRef Expression
1 lmimid.s . . . . . . 7  |-  S  =  ( (pInvG `  G
) `  B )
21a1i 11 . . . . . 6  |-  ( ph  ->  S  =  ( (pInvG `  G ) `  B
) )
32fveq1d 6193 . . . . 5  |-  ( ph  ->  ( S `  C
)  =  ( ( (pInvG `  G ) `  B ) `  C
) )
4 ismid.p . . . . . 6  |-  P  =  ( Base `  G
)
5 ismid.d . . . . . 6  |-  .-  =  ( dist `  G )
6 ismid.i . . . . . 6  |-  I  =  (Itv `  G )
7 ismid.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
8 ismid.1 . . . . . 6  |-  ( ph  ->  GDimTarskiG 2 )
9 lmimid.c . . . . . 6  |-  ( ph  ->  C  e.  P )
10 lmif.l . . . . . . 7  |-  L  =  (LineG `  G )
11 eqid 2622 . . . . . . 7  |-  (pInvG `  G )  =  (pInvG `  G )
12 lmif.d . . . . . . . 8  |-  ( ph  ->  D  e.  ran  L
)
13 lmimid.b . . . . . . . 8  |-  ( ph  ->  B  e.  D )
144, 10, 6, 7, 12, 13tglnpt 25444 . . . . . . 7  |-  ( ph  ->  B  e.  P )
154, 5, 6, 10, 11, 7, 14, 1, 9mircl 25556 . . . . . 6  |-  ( ph  ->  ( S `  C
)  e.  P )
164, 5, 6, 7, 8, 9, 15, 11, 14ismidb 25670 . . . . 5  |-  ( ph  ->  ( ( S `  C )  =  ( ( (pInvG `  G
) `  B ) `  C )  <->  ( C
(midG `  G )
( S `  C
) )  =  B ) )
173, 16mpbid 222 . . . 4  |-  ( ph  ->  ( C (midG `  G ) ( S `
 C ) )  =  B )
1817, 13eqeltrd 2701 . . 3  |-  ( ph  ->  ( C (midG `  G ) ( S `
 C ) )  e.  D )
19 df-ne 2795 . . . . . 6  |-  ( C  =/=  ( S `  C )  <->  -.  C  =  ( S `  C ) )
207adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  G  e. TarskiG )
2112adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  D  e.  ran  L )
229adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  C  e.  P )
2315adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  ( S `  C )  e.  P
)
24 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  C  =/=  ( S `  C ) )
254, 6, 10, 20, 22, 23, 24tgelrnln 25525 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  ( C L ( S `  C ) )  e. 
ran  L )
2613adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  B  e.  D )
2714adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  B  e.  P )
284, 5, 6, 7, 8, 9, 15midbtwn 25671 . . . . . . . . . . . 12  |-  ( ph  ->  ( C (midG `  G ) ( S `
 C ) )  e.  ( C I ( S `  C
) ) )
2917, 28eqeltrrd 2702 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ( C I ( S `  C ) ) )
3029adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  B  e.  ( C I ( S `
 C ) ) )
314, 6, 10, 20, 22, 23, 27, 24, 30btwnlng1 25514 . . . . . . . . 9  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  B  e.  ( C L ( S `
 C ) ) )
3226, 31elind 3798 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  B  e.  ( D  i^i  ( C L ( S `  C ) ) ) )
33 lmimid.a . . . . . . . . 9  |-  ( ph  ->  A  e.  D )
3433adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  A  e.  D )
354, 6, 10, 20, 22, 23, 24tglinerflx1 25528 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  C  e.  ( C L ( S `
 C ) ) )
36 lmimid.d . . . . . . . . 9  |-  ( ph  ->  A  =/=  B )
3736adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  A  =/=  B )
384, 5, 6, 10, 11, 7, 14, 1, 9mirinv 25561 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( S `  C )  =  C  <-> 
B  =  C ) )
39 eqcom 2629 . . . . . . . . . . . . . 14  |-  ( B  =  C  <->  C  =  B )
4038, 39syl6bb 276 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S `  C )  =  C  <-> 
C  =  B ) )
4140biimpar 502 . . . . . . . . . . . 12  |-  ( (
ph  /\  C  =  B )  ->  ( S `  C )  =  C )
4241eqcomd 2628 . . . . . . . . . . 11  |-  ( (
ph  /\  C  =  B )  ->  C  =  ( S `  C ) )
4342ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( C  =  B  ->  C  =  ( S `  C ) ) )
4443necon3d 2815 . . . . . . . . 9  |-  ( ph  ->  ( C  =/=  ( S `  C )  ->  C  =/=  B ) )
4544imp 445 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  C  =/=  B )
46 lmimid.r . . . . . . . . 9  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
4746adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  <" A B C ">  e.  (∟G `  G ) )
484, 5, 6, 10, 20, 21, 25, 32, 34, 35, 37, 45, 47ragperp 25612 . . . . . . 7  |-  ( (
ph  /\  C  =/=  ( S `  C ) )  ->  D (⟂G `  G ) ( C L ( S `  C ) ) )
4948ex 450 . . . . . 6  |-  ( ph  ->  ( C  =/=  ( S `  C )  ->  D (⟂G `  G
) ( C L ( S `  C
) ) ) )
5019, 49syl5bir 233 . . . . 5  |-  ( ph  ->  ( -.  C  =  ( S `  C
)  ->  D (⟂G `  G ) ( C L ( S `  C ) ) ) )
5150orrd 393 . . . 4  |-  ( ph  ->  ( C  =  ( S `  C )  \/  D (⟂G `  G
) ( C L ( S `  C
) ) ) )
5251orcomd 403 . . 3  |-  ( ph  ->  ( D (⟂G `  G
) ( C L ( S `  C
) )  \/  C  =  ( S `  C ) ) )
53 lmif.m . . . 4  |-  M  =  ( (lInvG `  G
) `  D )
544, 5, 6, 7, 8, 53, 10, 12, 9, 15islmib 25679 . . 3  |-  ( ph  ->  ( ( S `  C )  =  ( M `  C )  <-> 
( ( C (midG `  G ) ( S `
 C ) )  e.  D  /\  ( D (⟂G `  G )
( C L ( S `  C ) )  \/  C  =  ( S `  C
) ) ) ) )
5518, 52, 54mpbir2and 957 . 2  |-  ( ph  ->  ( S `  C
)  =  ( M `
 C ) )
5655eqcomd 2628 1  |-  ( ph  ->  ( M `  C
)  =  ( S `
 C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   2c2 11070   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590  midGcmid 25664  lInvGclmi 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591  df-mid 25666  df-lmi 25667
This theorem is referenced by:  hypcgrlem1  25691
  Copyright terms: Public domain W3C validator