MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem6 Structured version   Visualization version   Unicode version

Theorem opphllem6 25644
Description: First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p  |-  P  =  ( Base `  G
)
hpg.d  |-  .-  =  ( dist `  G )
hpg.i  |-  I  =  (Itv `  G )
hpg.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
opphl.l  |-  L  =  (LineG `  G )
opphl.d  |-  ( ph  ->  D  e.  ran  L
)
opphl.g  |-  ( ph  ->  G  e. TarskiG )
opphl.k  |-  K  =  (hlG `  G )
opphllem5.n  |-  N  =  ( (pInvG `  G
) `  M )
opphllem5.a  |-  ( ph  ->  A  e.  P )
opphllem5.c  |-  ( ph  ->  C  e.  P )
opphllem5.r  |-  ( ph  ->  R  e.  D )
opphllem5.s  |-  ( ph  ->  S  e.  D )
opphllem5.m  |-  ( ph  ->  M  e.  P )
opphllem5.o  |-  ( ph  ->  A O C )
opphllem5.p  |-  ( ph  ->  D (⟂G `  G
) ( A L R ) )
opphllem5.q  |-  ( ph  ->  D (⟂G `  G
) ( C L S ) )
opphllem5.u  |-  ( ph  ->  U  e.  P )
opphllem6.v  |-  ( ph  ->  ( N `  R
)  =  S )
Assertion
Ref Expression
opphllem6  |-  ( ph  ->  ( U ( K `
 R ) A  <-> 
( N `  U
) ( K `  S ) C ) )
Distinct variable groups:    D, a,
b    I, a, b    P, a, b    t, A    t, D    t, R    t, C    t, G    t, L    t, U    t, I    t, K   
t, M    t, O    t, N    t, P    t, S    ph, t    t,  .-    t, a, b
Allowed substitution hints:    ph( a, b)    A( a, b)    C( a, b)    R( a, b)    S( a, b)    U( a, b)    G( a, b)    K( a, b)    L( a, b)    M( a, b)    .- ( a, b)    N( a, b)    O( a, b)

Proof of Theorem opphllem6
StepHypRef Expression
1 hpg.p . . . 4  |-  P  =  ( Base `  G
)
2 hpg.d . . . 4  |-  .-  =  ( dist `  G )
3 hpg.i . . . 4  |-  I  =  (Itv `  G )
4 opphl.l . . . 4  |-  L  =  (LineG `  G )
5 eqid 2622 . . . 4  |-  (pInvG `  G )  =  (pInvG `  G )
6 opphl.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
76adantr 481 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  G  e. TarskiG )
8 opphllem5.n . . . 4  |-  N  =  ( (pInvG `  G
) `  M )
9 opphl.k . . . 4  |-  K  =  (hlG `  G )
10 opphllem5.m . . . . 5  |-  ( ph  ->  M  e.  P )
1110adantr 481 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  M  e.  P )
12 opphllem5.a . . . . 5  |-  ( ph  ->  A  e.  P )
1312adantr 481 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  A  e.  P )
14 opphllem5.c . . . . 5  |-  ( ph  ->  C  e.  P )
1514adantr 481 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  C  e.  P )
16 opphllem5.u . . . . 5  |-  ( ph  ->  U  e.  P )
1716adantr 481 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  U  e.  P )
18 opphl.d . . . . . . . 8  |-  ( ph  ->  D  e.  ran  L
)
19 opphllem5.r . . . . . . . 8  |-  ( ph  ->  R  e.  D )
201, 4, 3, 6, 18, 19tglnpt 25444 . . . . . . 7  |-  ( ph  ->  R  e.  P )
21 opphllem5.p . . . . . . . 8  |-  ( ph  ->  D (⟂G `  G
) ( A L R ) )
224, 6, 21perpln2 25606 . . . . . . 7  |-  ( ph  ->  ( A L R )  e.  ran  L
)
231, 3, 4, 6, 12, 20, 22tglnne 25523 . . . . . 6  |-  ( ph  ->  A  =/=  R )
2423adantr 481 . . . . 5  |-  ( (
ph  /\  R  =  S )  ->  A  =/=  R )
25 opphllem6.v . . . . . . . 8  |-  ( ph  ->  ( N `  R
)  =  S )
2625adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =  S )  ->  ( N `  R )  =  S )
27 simpr 477 . . . . . . 7  |-  ( (
ph  /\  R  =  S )  ->  R  =  S )
2826, 27eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  R  =  S )  ->  ( N `  R )  =  R )
291, 2, 3, 4, 5, 6, 10, 8, 20mirinv 25561 . . . . . . 7  |-  ( ph  ->  ( ( N `  R )  =  R  <-> 
M  =  R ) )
3029adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =  S )  ->  (
( N `  R
)  =  R  <->  M  =  R ) )
3128, 30mpbid 222 . . . . 5  |-  ( (
ph  /\  R  =  S )  ->  M  =  R )
3224, 31neeqtrrd 2868 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  A  =/=  M )
33 opphllem5.s . . . . . . . 8  |-  ( ph  ->  S  e.  D )
341, 4, 3, 6, 18, 33tglnpt 25444 . . . . . . 7  |-  ( ph  ->  S  e.  P )
35 opphllem5.q . . . . . . . 8  |-  ( ph  ->  D (⟂G `  G
) ( C L S ) )
364, 6, 35perpln2 25606 . . . . . . 7  |-  ( ph  ->  ( C L S )  e.  ran  L
)
371, 3, 4, 6, 14, 34, 36tglnne 25523 . . . . . 6  |-  ( ph  ->  C  =/=  S )
3837adantr 481 . . . . 5  |-  ( (
ph  /\  R  =  S )  ->  C  =/=  S )
3931, 27eqtrd 2656 . . . . 5  |-  ( (
ph  /\  R  =  S )  ->  M  =  S )
4038, 39neeqtrrd 2868 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  C  =/=  M )
41 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =  t )  ->  R  =  t )
426ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  G  e. TarskiG )
4342adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  G  e. TarskiG )
4414ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  C  e.  P )
4544adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  C  e.  P )
4620ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  P )
4746adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  P )
4818ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  D  e.  ran  L )
49 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  t  e.  D )
501, 4, 3, 42, 48, 49tglnpt 25444 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  t  e.  P )
5150adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  P )
5212ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  A  e.  P )
5352adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  A  e.  P )
5434ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  S  e.  P )
5554adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  S  e.  P )
56 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  =  S )
571, 3, 4, 6, 14, 34, 37tglinerflx2 25529 . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  ( C L S ) )
5857ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  S  e.  ( C L S ) )
5956, 58eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( C L S ) )
6059adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  ( C L S ) )
611, 3, 4, 6, 14, 34, 37tgelrnln 25525 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C L S )  e.  ran  L
)
621, 2, 3, 4, 6, 18, 61, 35perpcom 25608 . . . . . . . . . . . 12  |-  ( ph  ->  ( C L S ) (⟂G `  G
) D )
6362ad4antr 768 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( C L S ) (⟂G `  G ) D )
64 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  =/=  t )
6548adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  D  e.  ran  L )
6619ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  D )
6766adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  D )
6849adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  D )
691, 3, 4, 43, 47, 51, 64, 64, 65, 67, 68tglinethru 25531 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  D  =  ( R L t ) )
7063, 69breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( C L S ) (⟂G `  G ) ( R L t ) )
711, 2, 3, 4, 43, 45, 55, 60, 51, 70perprag 25618 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  <" C R t ">  e.  (∟G `  G )
)
721, 3, 4, 6, 12, 20, 23tglinerflx2 25529 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  ( A L R ) )
7372ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( A L R ) )
7473adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  ( A L R ) )
751, 3, 4, 6, 12, 20, 23tgelrnln 25525 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A L R )  e.  ran  L
)
761, 2, 3, 4, 6, 18, 75, 21perpcom 25608 . . . . . . . . . . . 12  |-  ( ph  ->  ( A L R ) (⟂G `  G
) D )
7776ad4antr 768 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( A L R ) (⟂G `  G ) D )
7877, 69breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( A L R ) (⟂G `  G ) ( R L t ) )
791, 2, 3, 4, 43, 53, 47, 74, 51, 78perprag 25618 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  <" A R t ">  e.  (∟G `  G )
)
80 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  ( A I C ) )
811, 2, 3, 43, 53, 51, 45, 80tgbtwncom 25383 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  ( C I A ) )
821, 2, 3, 4, 5, 43, 45, 47, 51, 53, 71, 79, 81ragflat2 25598 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  =  t )
8341, 82pm2.61dane 2881 . . . . . . 7  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  =  t )
84 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  t  e.  ( A I C ) )
8583, 84eqeltrd 2701 . . . . . 6  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( A I C ) )
86 opphllem5.o . . . . . . . . 9  |-  ( ph  ->  A O C )
87 hpg.o . . . . . . . . . 10  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
881, 2, 3, 87, 12, 14islnopp 25631 . . . . . . . . 9  |-  ( ph  ->  ( A O C  <-> 
( ( -.  A  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( A I C ) ) ) )
8986, 88mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( ( -.  A  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( A I C ) ) )
9089simprd 479 . . . . . . 7  |-  ( ph  ->  E. t  e.  D  t  e.  ( A I C ) )
9190adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =  S )  ->  E. t  e.  D  t  e.  ( A I C ) )
9285, 91r19.29a 3078 . . . . 5  |-  ( (
ph  /\  R  =  S )  ->  R  e.  ( A I C ) )
9331, 92eqeltrd 2701 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  M  e.  ( A I C ) )
941, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 32, 40, 93mirbtwnhl 25575 . . 3  |-  ( (
ph  /\  R  =  S )  ->  ( U ( K `  M ) A  <->  ( N `  U ) ( K `
 M ) C ) )
9531fveq2d 6195 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  ( K `  M )  =  ( K `  R ) )
9695breqd 4664 . . 3  |-  ( (
ph  /\  R  =  S )  ->  ( U ( K `  M ) A  <->  U ( K `  R ) A ) )
9739fveq2d 6195 . . . 4  |-  ( (
ph  /\  R  =  S )  ->  ( K `  M )  =  ( K `  S ) )
9897breqd 4664 . . 3  |-  ( (
ph  /\  R  =  S )  ->  (
( N `  U
) ( K `  M ) C  <->  ( N `  U ) ( K `
 S ) C ) )
9994, 96, 983bitr3d 298 . 2  |-  ( (
ph  /\  R  =  S )  ->  ( U ( K `  R ) A  <->  ( N `  U ) ( K `
 S ) C ) )
10018ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  D  e.  ran  L )
1016ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  G  e. TarskiG )
10212ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  A  e.  P
)
10314ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  C  e.  P
)
10419ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  R  e.  D
)
10533ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  S  e.  D
)
10610ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  M  e.  P
)
10786ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  A O C )
10821ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  D (⟂G `  G
) ( A L R ) )
10935ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  D (⟂G `  G
) ( C L S ) )
110 simpr 477 . . . . 5  |-  ( (
ph  /\  R  =/=  S )  ->  R  =/=  S )
111110adantr 481 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  R  =/=  S
)
112 simpr 477 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )
11316ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  U  e.  P
)
11425ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  ( N `  R )  =  S )
1151, 2, 3, 87, 4, 100, 101, 9, 8, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114opphllem3 25641 . . 3  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  ( U ( K `  R ) A  <->  ( N `  U ) ( K `
 S ) C ) )
11618ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  D  e.  ran  L )
1176adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  G  e. TarskiG )
118117adantr 481 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  G  e. TarskiG )
11914ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  C  e.  P
)
12012adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  A  e.  P )
121120adantr 481 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  A  e.  P
)
12233adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  S  e.  D )
123122adantr 481 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  S  e.  D
)
12419adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  R  e.  D )
125124adantr 481 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  R  e.  D
)
12610ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  M  e.  P
)
12786ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  A O C )
1281, 2, 3, 87, 4, 116, 118, 121, 119, 127oppcom 25636 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  C O A )
12935ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  D (⟂G `  G
) ( C L S ) )
13021adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  D (⟂G `  G ) ( A L R ) )
131130adantr 481 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  D (⟂G `  G
) ( A L R ) )
132110necomd 2849 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  S  =/=  R )
133132adantr 481 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  S  =/=  R
)
134 simpr 477 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )
13516ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  U  e.  P
)
1361, 2, 3, 4, 5, 118, 126, 8, 135mircl 25556 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( N `  U )  e.  P
)
13720adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =/=  S )  ->  R  e.  P )
138137adantr 481 . . . . . 6  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  R  e.  P
)
13925ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( N `  R )  =  S )
1401, 2, 3, 4, 5, 118, 126, 8, 138, 139mircom 25558 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( N `  S )  =  R )
1411, 2, 3, 87, 4, 116, 118, 9, 8, 119, 121, 123, 125, 126, 128, 129, 131, 133, 134, 136, 140opphllem3 25641 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( ( N `
 U ) ( K `  S ) C  <->  ( N `  ( N `  U ) ) ( K `  R ) A ) )
1421, 2, 3, 4, 5, 118, 126, 8, 135mirmir 25557 . . . . 5  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( N `  ( N `  U ) )  =  U )
143142breq1d 4663 . . . 4  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( ( N `
 ( N `  U ) ) ( K `  R ) A  <->  U ( K `  R ) A ) )
144141, 143bitr2d 269 . . 3  |-  ( ( ( ph  /\  R  =/=  S )  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( U ( K `  R ) A  <->  ( N `  U ) ( K `
 S ) C ) )
145 eqid 2622 . . . . 5  |-  (≤G `  G )  =  (≤G `  G )
1461, 2, 3, 145, 6, 34, 14, 20, 12legtrid 25486 . . . 4  |-  ( ph  ->  ( ( S  .-  C ) (≤G `  G ) ( R 
.-  A )  \/  ( R  .-  A
) (≤G `  G
) ( S  .-  C ) ) )
147146adantr 481 . . 3  |-  ( (
ph  /\  R  =/=  S )  ->  ( ( S  .-  C ) (≤G `  G ) ( R 
.-  A )  \/  ( R  .-  A
) (≤G `  G
) ( S  .-  C ) ) )
148115, 144, 147mpjaodan 827 . 2  |-  ( (
ph  /\  R  =/=  S )  ->  ( U
( K `  R
) A  <->  ( N `  U ) ( K `
 S ) C ) )
14999, 148pm2.61dane 2881 1  |-  ( ph  ->  ( U ( K `
 R ) A  <-> 
( N `  U
) ( K `  S ) C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  ≤Gcleg 25477  hlGchlg 25495  pInvGcmir 25547  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  opphl  25646
  Copyright terms: Public domain W3C validator