Proof of Theorem opphllem6
Step | Hyp | Ref
| Expression |
1 | | hpg.p |
. . . 4
     |
2 | | hpg.d |
. . . 4
     |
3 | | hpg.i |
. . . 4
Itv   |
4 | | opphl.l |
. . . 4
LineG   |
5 | | eqid 2622 |
. . . 4
pInvG  pInvG   |
6 | | opphl.g |
. . . . 5

TarskiG |
7 | 6 | adantr 481 |
. . . 4
 
 TarskiG |
8 | | opphllem5.n |
. . . 4
 pInvG      |
9 | | opphl.k |
. . . 4
hlG   |
10 | | opphllem5.m |
. . . . 5
   |
11 | 10 | adantr 481 |
. . . 4
 
   |
12 | | opphllem5.a |
. . . . 5
   |
13 | 12 | adantr 481 |
. . . 4
 
   |
14 | | opphllem5.c |
. . . . 5
   |
15 | 14 | adantr 481 |
. . . 4
 
   |
16 | | opphllem5.u |
. . . . 5
   |
17 | 16 | adantr 481 |
. . . 4
 
   |
18 | | opphl.d |
. . . . . . . 8
   |
19 | | opphllem5.r |
. . . . . . . 8
   |
20 | 1, 4, 3, 6, 18, 19 | tglnpt 25444 |
. . . . . . 7
   |
21 | | opphllem5.p |
. . . . . . . 8
  ⟂G         |
22 | 4, 6, 21 | perpln2 25606 |
. . . . . . 7
       |
23 | 1, 3, 4, 6, 12, 20, 22 | tglnne 25523 |
. . . . . 6
   |
24 | 23 | adantr 481 |
. . . . 5
 
   |
25 | | opphllem6.v |
. . . . . . . 8
       |
26 | 25 | adantr 481 |
. . . . . . 7
 
       |
27 | | simpr 477 |
. . . . . . 7
 
   |
28 | 26, 27 | eqtr4d 2659 |
. . . . . 6
 
       |
29 | 1, 2, 3, 4, 5, 6, 10, 8, 20 | mirinv 25561 |
. . . . . . 7
         |
30 | 29 | adantr 481 |
. . . . . 6
 
     
   |
31 | 28, 30 | mpbid 222 |
. . . . 5
 
   |
32 | 24, 31 | neeqtrrd 2868 |
. . . 4
 
   |
33 | | opphllem5.s |
. . . . . . . 8
   |
34 | 1, 4, 3, 6, 18, 33 | tglnpt 25444 |
. . . . . . 7
   |
35 | | opphllem5.q |
. . . . . . . 8
  ⟂G         |
36 | 4, 6, 35 | perpln2 25606 |
. . . . . . 7
       |
37 | 1, 3, 4, 6, 14, 34, 36 | tglnne 25523 |
. . . . . 6
   |
38 | 37 | adantr 481 |
. . . . 5
 
   |
39 | 31, 27 | eqtrd 2656 |
. . . . 5
 
   |
40 | 38, 39 | neeqtrrd 2868 |
. . . 4
 
   |
41 | | simpr 477 |
. . . . . . . 8
      
        |
42 | 6 | ad3antrrr 766 |
. . . . . . . . . 10
   


    
TarskiG |
43 | 42 | adantr 481 |
. . . . . . . . 9
      
      TarskiG |
44 | 14 | ad3antrrr 766 |
. . . . . . . . . 10
   


    
  |
45 | 44 | adantr 481 |
. . . . . . . . 9
      
        |
46 | 20 | ad3antrrr 766 |
. . . . . . . . . 10
   


    
  |
47 | 46 | adantr 481 |
. . . . . . . . 9
      
        |
48 | 18 | ad3antrrr 766 |
. . . . . . . . . . 11
   


    
  |
49 | | simplr 792 |
. . . . . . . . . . 11
   


    
  |
50 | 1, 4, 3, 42, 48, 49 | tglnpt 25444 |
. . . . . . . . . 10
   


    
  |
51 | 50 | adantr 481 |
. . . . . . . . 9
      
        |
52 | 12 | ad3antrrr 766 |
. . . . . . . . . 10
   


    
  |
53 | 52 | adantr 481 |
. . . . . . . . 9
      
        |
54 | 34 | ad3antrrr 766 |
. . . . . . . . . . 11
   


    
  |
55 | 54 | adantr 481 |
. . . . . . . . . 10
      
        |
56 | | simpllr 799 |
. . . . . . . . . . . 12
   


    
  |
57 | 1, 3, 4, 6, 14, 34, 37 | tglinerflx2 25529 |
. . . . . . . . . . . . 13
       |
58 | 57 | ad3antrrr 766 |
. . . . . . . . . . . 12
   


    
      |
59 | 56, 58 | eqeltrd 2701 |
. . . . . . . . . . 11
   


    
      |
60 | 59 | adantr 481 |
. . . . . . . . . 10
      
            |
61 | 1, 3, 4, 6, 14, 34, 37 | tgelrnln 25525 |
. . . . . . . . . . . . 13
       |
62 | 1, 2, 3, 4, 6, 18,
61, 35 | perpcom 25608 |
. . . . . . . . . . . 12
      ⟂G     |
63 | 62 | ad4antr 768 |
. . . . . . . . . . 11
      
           ⟂G     |
64 | | simpr 477 |
. . . . . . . . . . . 12
      
        |
65 | 48 | adantr 481 |
. . . . . . . . . . . 12
      
        |
66 | 19 | ad3antrrr 766 |
. . . . . . . . . . . . 13
   


    
  |
67 | 66 | adantr 481 |
. . . . . . . . . . . 12
      
        |
68 | 49 | adantr 481 |
. . . . . . . . . . . 12
      
        |
69 | 1, 3, 4, 43, 47, 51, 64, 64, 65, 67, 68 | tglinethru 25531 |
. . . . . . . . . . 11
      
            |
70 | 63, 69 | breqtrd 4679 |
. . . . . . . . . 10
      
           ⟂G         |
71 | 1, 2, 3, 4, 43, 45, 55, 60, 51, 70 | perprag 25618 |
. . . . . . . . 9
      
            ∟G    |
72 | 1, 3, 4, 6, 12, 20, 23 | tglinerflx2 25529 |
. . . . . . . . . . . 12
       |
73 | 72 | ad3antrrr 766 |
. . . . . . . . . . 11
   


    
      |
74 | 73 | adantr 481 |
. . . . . . . . . 10
      
            |
75 | 1, 3, 4, 6, 12, 20, 23 | tgelrnln 25525 |
. . . . . . . . . . . . 13
       |
76 | 1, 2, 3, 4, 6, 18,
75, 21 | perpcom 25608 |
. . . . . . . . . . . 12
      ⟂G     |
77 | 76 | ad4antr 768 |
. . . . . . . . . . 11
      
           ⟂G     |
78 | 77, 69 | breqtrd 4679 |
. . . . . . . . . 10
      
           ⟂G         |
79 | 1, 2, 3, 4, 43, 53, 47, 74, 51, 78 | perprag 25618 |
. . . . . . . . 9
      
            ∟G    |
80 | | simplr 792 |
. . . . . . . . . 10
      
            |
81 | 1, 2, 3, 43, 53, 51, 45, 80 | tgbtwncom 25383 |
. . . . . . . . 9
      
            |
82 | 1, 2, 3, 4, 5, 43,
45, 47, 51, 53, 71, 79, 81 | ragflat2 25598 |
. . . . . . . 8
      
        |
83 | 41, 82 | pm2.61dane 2881 |
. . . . . . 7
   


    
  |
84 | | simpr 477 |
. . . . . . 7
   


    
      |
85 | 83, 84 | eqeltrd 2701 |
. . . . . 6
   


    
      |
86 | | opphllem5.o |
. . . . . . . . 9
     |
87 | | hpg.o |
. . . . . . . . . 10
   
   
           |
88 | 1, 2, 3, 87, 12, 14 | islnopp 25631 |
. . . . . . . . 9
     
 
        |
89 | 86, 88 | mpbid 222 |
. . . . . . . 8
  
 
       |
90 | 89 | simprd 479 |
. . . . . . 7
 
      |
91 | 90 | adantr 481 |
. . . . . 6
 
 
      |
92 | 85, 91 | r19.29a 3078 |
. . . . 5
 
       |
93 | 31, 92 | eqeltrd 2701 |
. . . 4
 
       |
94 | 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 32, 40, 93 | mirbtwnhl 25575 |
. . 3
 
       
             |
95 | 31 | fveq2d 6195 |
. . . 4
 
           |
96 | 95 | breqd 4664 |
. . 3
 
       
         |
97 | 39 | fveq2d 6195 |
. . . 4
 
           |
98 | 97 | breqd 4664 |
. . 3
 
           
             |
99 | 94, 96, 98 | 3bitr3d 298 |
. 2
 
       
             |
100 | 18 | ad2antrr 762 |
. . . 4
       ≤G        |
101 | 6 | ad2antrr 762 |
. . . 4
       ≤G      TarskiG |
102 | 12 | ad2antrr 762 |
. . . 4
       ≤G        |
103 | 14 | ad2antrr 762 |
. . . 4
       ≤G        |
104 | 19 | ad2antrr 762 |
. . . 4
       ≤G        |
105 | 33 | ad2antrr 762 |
. . . 4
       ≤G        |
106 | 10 | ad2antrr 762 |
. . . 4
       ≤G        |
107 | 86 | ad2antrr 762 |
. . . 4
       ≤G          |
108 | 21 | ad2antrr 762 |
. . . 4
       ≤G       ⟂G         |
109 | 35 | ad2antrr 762 |
. . . 4
       ≤G       ⟂G         |
110 | | simpr 477 |
. . . . 5
 

  |
111 | 110 | adantr 481 |
. . . 4
       ≤G        |
112 | | simpr 477 |
. . . 4
       ≤G         ≤G       |
113 | 16 | ad2antrr 762 |
. . . 4
       ≤G        |
114 | 25 | ad2antrr 762 |
. . . 4
       ≤G            |
115 | 1, 2, 3, 87, 4, 100, 101, 9, 8, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114 | opphllem3 25641 |
. . 3
       ≤G                          |
116 | 18 | ad2antrr 762 |
. . . . 5
       ≤G        |
117 | 6 | adantr 481 |
. . . . . 6
 

TarskiG |
118 | 117 | adantr 481 |
. . . . 5
       ≤G      TarskiG |
119 | 14 | ad2antrr 762 |
. . . . 5
       ≤G        |
120 | 12 | adantr 481 |
. . . . . 6
 

  |
121 | 120 | adantr 481 |
. . . . 5
       ≤G        |
122 | 33 | adantr 481 |
. . . . . 6
 

  |
123 | 122 | adantr 481 |
. . . . 5
       ≤G        |
124 | 19 | adantr 481 |
. . . . . 6
 

  |
125 | 124 | adantr 481 |
. . . . 5
       ≤G        |
126 | 10 | ad2antrr 762 |
. . . . 5
       ≤G        |
127 | 86 | ad2antrr 762 |
. . . . . 6
       ≤G          |
128 | 1, 2, 3, 87, 4, 116, 118, 121, 119, 127 | oppcom 25636 |
. . . . 5
       ≤G          |
129 | 35 | ad2antrr 762 |
. . . . 5
       ≤G       ⟂G         |
130 | 21 | adantr 481 |
. . . . . 6
 

 ⟂G         |
131 | 130 | adantr 481 |
. . . . 5
       ≤G       ⟂G         |
132 | 110 | necomd 2849 |
. . . . . 6
 

  |
133 | 132 | adantr 481 |
. . . . 5
       ≤G        |
134 | | simpr 477 |
. . . . 5
       ≤G         ≤G       |
135 | 16 | ad2antrr 762 |
. . . . . 6
       ≤G        |
136 | 1, 2, 3, 4, 5, 118, 126, 8, 135 | mircl 25556 |
. . . . 5
       ≤G            |
137 | 20 | adantr 481 |
. . . . . . 7
 

  |
138 | 137 | adantr 481 |
. . . . . 6
       ≤G        |
139 | 25 | ad2antrr 762 |
. . . . . 6
       ≤G            |
140 | 1, 2, 3, 4, 5, 118, 126, 8, 138, 139 | mircom 25558 |
. . . . 5
       ≤G            |
141 | 1, 2, 3, 87, 4, 116, 118, 9, 8, 119, 121, 123, 125, 126, 128, 129, 131, 133, 134, 136, 140 | opphllem3 25641 |
. . . 4
       ≤G                                  |
142 | 1, 2, 3, 4, 5, 118, 126, 8, 135 | mirmir 25557 |
. . . . 5
       ≤G                |
143 | 142 | breq1d 4663 |
. . . 4
       ≤G                              |
144 | 141, 143 | bitr2d 269 |
. . 3
       ≤G                          |
145 | | eqid 2622 |
. . . . 5
≤G  ≤G   |
146 | 1, 2, 3, 145, 6, 34, 14, 20, 12 | legtrid 25486 |
. . . 4
     ≤G        ≤G        |
147 | 146 | adantr 481 |
. . 3
 

    ≤G        ≤G        |
148 | 115, 144,
147 | mpjaodan 827 |
. 2
 

      
             |
149 | 99, 148 | pm2.61dane 2881 |
1
                     |