MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnzcnopr Structured version   Visualization version   Unicode version

Theorem mulnzcnopr 10673
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.)
Assertion
Ref Expression
mulnzcnopr  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) : ( ( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) --> ( CC  \  {
0 } )

Proof of Theorem mulnzcnopr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-mulf 10016 . . . . 5  |-  x.  :
( CC  X.  CC )
--> CC
2 ffnov 6764 . . . . 5  |-  (  x.  : ( CC  X.  CC ) --> CC  <->  (  x.  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC ) )
31, 2mpbi 220 . . . 4  |-  (  x.  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC )
43simpli 474 . . 3  |-  x.  Fn  ( CC  X.  CC )
5 difss 3737 . . . 4  |-  ( CC 
\  { 0 } )  C_  CC
6 xpss12 5225 . . . 4  |-  ( ( ( CC  \  {
0 } )  C_  CC  /\  ( CC  \  { 0 } ) 
C_  CC )  -> 
( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  C_  ( CC  X.  CC ) )
75, 5, 6mp2an 708 . . 3  |-  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  C_  ( CC  X.  CC )
8 fnssres 6004 . . 3  |-  ( (  x.  Fn  ( CC 
X.  CC )  /\  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  C_  ( CC  X.  CC ) )  -> 
(  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) )  Fn  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )
94, 7, 8mp2an 708 . 2  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  Fn  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) )
10 ovres 6800 . . . 4  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  =  ( x  x.  y ) )
11 eldifsn 4317 . . . . . 6  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
12 eldifsn 4317 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
13 mulcl 10020 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
1413ad2ant2r 783 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  e.  CC )
15 mulne0 10669 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  =/=  0 )
1614, 15jca 554 . . . . . 6  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( ( x  x.  y )  e.  CC  /\  ( x  x.  y
)  =/=  0 ) )
1711, 12, 16syl2anb 496 . . . . 5  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( ( x  x.  y )  e.  CC  /\  ( x  x.  y )  =/=  0 ) )
18 eldifsn 4317 . . . . 5  |-  ( ( x  x.  y )  e.  ( CC  \  { 0 } )  <-> 
( ( x  x.  y )  e.  CC  /\  ( x  x.  y
)  =/=  0 ) )
1917, 18sylibr 224 . . . 4  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x  x.  y )  e.  ( CC  \  { 0 } ) )
2010, 19eqeltrd 2701 . . 3  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  e.  ( CC 
\  { 0 } ) )
2120rgen2a 2977 . 2  |-  A. x  e.  ( CC  \  {
0 } ) A. y  e.  ( CC  \  { 0 } ) ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) y )  e.  ( CC  \  { 0 } )
22 ffnov 6764 . 2  |-  ( (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) : ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) --> ( CC  \  { 0 } )  <-> 
( (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) )  Fn  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  /\  A. x  e.  ( CC  \  { 0 } ) A. y  e.  ( CC  \  { 0 } ) ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y )  e.  ( CC  \  {
0 } ) ) )
239, 21, 22mpbir2an 955 1  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) : ( ( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) --> ( CC  \  {
0 } )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177    X. cxp 5112    |` cres 5116    Fn wfn 5883   -->wf 5884  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator