MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod2dlem Structured version   Visualization version   Unicode version

Theorem fprod2dlem 14710
Description: Lemma for fprod2d 14711- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
fprod2d.5  |-  ( ph  ->  -.  y  e.  x
)
fprod2d.6  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
fprod2d.7  |-  ( ps  <->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )
Assertion
Ref Expression
fprod2dlem  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Distinct variable groups:    A, j,
k    B, k, z    z, C    D, j, k    ph, j    x, j    y, j, z    ph, k    x, k    y,
k, z    ph, z    x, z    y, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z, j, k)    A( x, y, z)    B( x, y, j)    C( x, y, j, k)    D( x, y, z)

Proof of Theorem fprod2dlem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
2 fprod2d.7 . . . 4  |-  ( ps  <->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )
31, 2sylib 208 . . 3  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
4 nfcv 2764 . . . . . 6  |-  F/_ m prod_ k  e.  B  C
5 nfcsb1v 3549 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ B
6 nfcsb1v 3549 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ C
75, 6nfcprod 14641 . . . . . 6  |-  F/_ j prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C
8 csbeq1a 3542 . . . . . . 7  |-  ( j  =  m  ->  B  =  [_ m  /  j ]_ B )
9 csbeq1a 3542 . . . . . . . 8  |-  ( j  =  m  ->  C  =  [_ m  /  j ]_ C )
109adantr 481 . . . . . . 7  |-  ( ( j  =  m  /\  k  e.  B )  ->  C  =  [_ m  /  j ]_ C
)
118, 10prodeq12dv 14656 . . . . . 6  |-  ( j  =  m  ->  prod_ k  e.  B  C  = 
prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C )
124, 7, 11cbvprodi 14647 . . . . 5  |-  prod_ j  e.  { y } prod_ k  e.  B  C  = 
prod_ m  e.  { y } prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C
13 fprod2d.6 . . . . . . . . 9  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
1413unssbd 3791 . . . . . . . 8  |-  ( ph  ->  { y }  C_  A )
15 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
1615snss 4316 . . . . . . . 8  |-  ( y  e.  A  <->  { y }  C_  A )
1714, 16sylibr 224 . . . . . . 7  |-  ( ph  ->  y  e.  A )
18 fprod2d.3 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
1918ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. j  e.  A  B  e.  Fin )
20 nfcsb1v 3549 . . . . . . . . . . 11  |-  F/_ j [_ y  /  j ]_ B
2120nfel1 2779 . . . . . . . . . 10  |-  F/ j
[_ y  /  j ]_ B  e.  Fin
22 csbeq1a 3542 . . . . . . . . . . 11  |-  ( j  =  y  ->  B  =  [_ y  /  j ]_ B )
2322eleq1d 2686 . . . . . . . . . 10  |-  ( j  =  y  ->  ( B  e.  Fin  <->  [_ y  / 
j ]_ B  e.  Fin ) )
2421, 23rspc 3303 . . . . . . . . 9  |-  ( y  e.  A  ->  ( A. j  e.  A  B  e.  Fin  ->  [_ y  /  j ]_ B  e.  Fin ) )
2517, 19, 24sylc 65 . . . . . . . 8  |-  ( ph  ->  [_ y  /  j ]_ B  e.  Fin )
26 fprod2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
2726ralrimivva 2971 . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  A  A. k  e.  B  C  e.  CC )
28 nfcsb1v 3549 . . . . . . . . . . . . 13  |-  F/_ j [_ y  /  j ]_ C
2928nfel1 2779 . . . . . . . . . . . 12  |-  F/ j
[_ y  /  j ]_ C  e.  CC
3020, 29nfral 2945 . . . . . . . . . . 11  |-  F/ j A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC
31 csbeq1a 3542 . . . . . . . . . . . . 13  |-  ( j  =  y  ->  C  =  [_ y  /  j ]_ C )
3231eleq1d 2686 . . . . . . . . . . . 12  |-  ( j  =  y  ->  ( C  e.  CC  <->  [_ y  / 
j ]_ C  e.  CC ) )
3322, 32raleqbidv 3152 . . . . . . . . . . 11  |-  ( j  =  y  ->  ( A. k  e.  B  C  e.  CC  <->  A. k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  e.  CC ) )
3430, 33rspc 3303 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( A. j  e.  A  A. k  e.  B  C  e.  CC  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC ) )
3517, 27, 34sylc 65 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
3635r19.21bi 2932 . . . . . . . 8  |-  ( (
ph  /\  k  e.  [_ y  /  j ]_ B )  ->  [_ y  /  j ]_ C  e.  CC )
3725, 36fprodcl 14682 . . . . . . 7  |-  ( ph  ->  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
38 csbeq1 3536 . . . . . . . . 9  |-  ( m  =  y  ->  [_ m  /  j ]_ B  =  [_ y  /  j ]_ B )
39 csbeq1 3536 . . . . . . . . . 10  |-  ( m  =  y  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C )
4039adantr 481 . . . . . . . . 9  |-  ( ( m  =  y  /\  k  e.  [_ m  / 
j ]_ B )  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C
)
4138, 40prodeq12dv 14656 . . . . . . . 8  |-  ( m  =  y  ->  prod_ k  e.  [_  m  / 
j ]_ B [_ m  /  j ]_ C  =  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C )
4241prodsn 14692 . . . . . . 7  |-  ( ( y  e.  A  /\  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
4317, 37, 42syl2anc 693 . . . . . 6  |-  ( ph  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
44 nfcv 2764 . . . . . . . 8  |-  F/_ m [_ y  /  j ]_ C
45 nfcsb1v 3549 . . . . . . . 8  |-  F/_ k [_ m  /  k ]_ [_ y  /  j ]_ C
46 csbeq1a 3542 . . . . . . . 8  |-  ( k  =  m  ->  [_ y  /  j ]_ C  =  [_ m  /  k ]_ [_ y  /  j ]_ C )
4744, 45, 46cbvprodi 14647 . . . . . . 7  |-  prod_ k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  =  prod_ m  e.  [_  y  / 
j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C
48 csbeq1 3536 . . . . . . . . 9  |-  ( m  =  ( 2nd `  z
)  ->  [_ m  / 
k ]_ [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
49 snfi 8038 . . . . . . . . . 10  |-  { y }  e.  Fin
50 xpfi 8231 . . . . . . . . . 10  |-  ( ( { y }  e.  Fin  /\  [_ y  / 
j ]_ B  e.  Fin )  ->  ( { y }  X.  [_ y  /  j ]_ B
)  e.  Fin )
5149, 25, 50sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( { y }  X.  [_ y  / 
j ]_ B )  e. 
Fin )
52 2ndconst 7266 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) : ( { y }  X.  [_ y  /  j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B )
5317, 52syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) : ( { y }  X.  [_ y  / 
j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B
)
54 fvres 6207 . . . . . . . . . 10  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) `  z
)  =  ( 2nd `  z ) )
5554adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) `  z )  =  ( 2nd `  z ) )
5645nfel1 2779 . . . . . . . . . . 11  |-  F/ k
[_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC
5746eleq1d 2686 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( [_ y  /  j ]_ C  e.  CC  <->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
)
5856, 57rspc 3303 . . . . . . . . . 10  |-  ( m  e.  [_ y  / 
j ]_ B  ->  ( A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC ) )
5935, 58mpan9 486 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  [_ y  /  j ]_ B )  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
6048, 51, 53, 55, 59fprodf1o 14676 . . . . . . . 8  |-  ( ph  ->  prod_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
61 elxp 5131 . . . . . . . . . . . 12  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. m E. k
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) ) )
62 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ j  z  =  <. m ,  k >.
63 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ j  m  e.  { y }
6420nfcri 2758 . . . . . . . . . . . . . . . 16  |-  F/ j  k  e.  [_ y  /  j ]_ B
6563, 64nfan 1828 . . . . . . . . . . . . . . 15  |-  F/ j ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )
6662, 65nfan 1828 . . . . . . . . . . . . . 14  |-  F/ j ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )
6766nfex 2154 . . . . . . . . . . . . 13  |-  F/ j E. k ( z  =  <. m ,  k
>.  /\  ( m  e. 
{ y }  /\  k  e.  [_ y  / 
j ]_ B ) )
68 nfv 1843 . . . . . . . . . . . . 13  |-  F/ m E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )
69 opeq1 4402 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  <. m ,  k >.  =  <. j ,  k >. )
7069eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
z  =  <. m ,  k >.  <->  z  =  <. j ,  k >.
) )
71 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  j  ->  (
m  e.  { y }  <->  j  e.  {
y } ) )
72 velsn 4193 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  { y }  <-> 
j  =  y )
7371, 72syl6bb 276 . . . . . . . . . . . . . . . . 17  |-  ( m  =  j  ->  (
m  e.  { y }  <->  j  =  y ) )
7473anbi1d 741 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( j  =  y  /\  k  e.  [_ y  /  j ]_ B ) ) )
7522eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( j  =  y  ->  (
k  e.  B  <->  k  e.  [_ y  /  j ]_ B ) )
7675pm5.32i 669 . . . . . . . . . . . . . . . 16  |-  ( ( j  =  y  /\  k  e.  B )  <->  ( j  =  y  /\  k  e.  [_ y  / 
j ]_ B ) )
7774, 76syl6bbr 278 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( j  =  y  /\  k  e.  B ) ) )
7870, 77anbi12d 747 . . . . . . . . . . . . . 14  |-  ( m  =  j  ->  (
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  ( z  =  <. j ,  k
>.  /\  ( j  =  y  /\  k  e.  B ) ) ) )
7978exbidv 1850 . . . . . . . . . . . . 13  |-  ( m  =  j  ->  ( E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B ) )  <->  E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) ) )
8067, 68, 79cbvex 2272 . . . . . . . . . . . 12  |-  ( E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) ) )
8161, 80bitri 264 . . . . . . . . . . 11  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. j E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) )
82 nfv 1843 . . . . . . . . . . . 12  |-  F/ j
ph
83 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ j
( 2nd `  z
)
8483, 28nfcsb 3551 . . . . . . . . . . . . 13  |-  F/_ j [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
8584nfeq2 2780 . . . . . . . . . . . 12  |-  F/ j  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
86 nfv 1843 . . . . . . . . . . . . 13  |-  F/ k
ph
87 nfcsb1v 3549 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
8887nfeq2 2780 . . . . . . . . . . . . 13  |-  F/ k  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
89 fprod2d.1 . . . . . . . . . . . . . . . 16  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
9089ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  C )
9131ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  C  =  [_ y  /  j ]_ C )
92 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  <. j ,  k
>.  ->  ( 2nd `  z
)  =  ( 2nd `  <. j ,  k
>. ) )
93 vex 3203 . . . . . . . . . . . . . . . . . . 19  |-  j  e. 
_V
94 vex 3203 . . . . . . . . . . . . . . . . . . 19  |-  k  e. 
_V
9593, 94op2nd 7177 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  <. j ,  k
>. )  =  k
9692, 95syl6req 2673 . . . . . . . . . . . . . . . . 17  |-  ( z  =  <. j ,  k
>.  ->  k  =  ( 2nd `  z ) )
9796ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  k  =  ( 2nd `  z ) )
98 csbeq1a 3542 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( 2nd `  z
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
9997, 98syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
10090, 91, 993eqtrd 2660 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
101100expl 648 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10286, 88, 101exlimd 2087 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. k ( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10382, 85, 102exlimd 2087 . . . . . . . . . . 11  |-  ( ph  ->  ( E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10481, 103syl5bi 232 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
105104imp 445 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  ->  D  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C )
106105prodeq2dv 14653 . . . . . . . 8  |-  ( ph  ->  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) D  = 
prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C )
10760, 106eqtr4d 2659 . . . . . . 7  |-  ( ph  ->  prod_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
10847, 107syl5eq 2668 . . . . . 6  |-  ( ph  ->  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
10943, 108eqtrd 2656 . . . . 5  |-  ( ph  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
11012, 109syl5eq 2668 . . . 4  |-  ( ph  ->  prod_ j  e.  {
y } prod_ k  e.  B  C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
111110adantr 481 . . 3  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  {
y } prod_ k  e.  B  C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
1123, 111oveq12d 6668 . 2  |-  ( (
ph  /\  ps )  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
113 fprod2d.5 . . . . 5  |-  ( ph  ->  -.  y  e.  x
)
114 disjsn 4246 . . . . 5  |-  ( ( x  i^i  { y } )  =  (/)  <->  -.  y  e.  x )
115113, 114sylibr 224 . . . 4  |-  ( ph  ->  ( x  i^i  {
y } )  =  (/) )
116 eqidd 2623 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  =  ( x  u.  {
y } ) )
117 fprod2d.2 . . . . 5  |-  ( ph  ->  A  e.  Fin )
118 ssfi 8180 . . . . 5  |-  ( ( A  e.  Fin  /\  ( x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } )  e.  Fin )
119117, 13, 118syl2anc 693 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  e. 
Fin )
12013sselda 3603 . . . . 5  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
j  e.  A )
12126anassrs 680 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
12218, 121fprodcl 14682 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  prod_ k  e.  B  C  e.  CC )
123120, 122syldan 487 . . . 4  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  prod_ k  e.  B  C  e.  CC )
124115, 116, 119, 123fprodsplit 14696 . . 3  |-  ( ph  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )
)
125124adantr 481 . 2  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )
)
126 eliun 4524 . . . . . . . . . 10  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  <->  E. j  e.  x  z  e.  ( {
j }  X.  B
) )
127 xp1st 7198 . . . . . . . . . . . . . 14  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  { j } )
128 elsni 4194 . . . . . . . . . . . . . 14  |-  ( ( 1st `  z )  e.  { j }  ->  ( 1st `  z
)  =  j )
129127, 128syl 17 . . . . . . . . . . . . 13  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  =  j )
130129eleq1d 2686 . . . . . . . . . . . 12  |-  ( z  e.  ( { j }  X.  B )  ->  ( ( 1st `  z )  e.  x  <->  j  e.  x ) )
131130biimparc 504 . . . . . . . . . . 11  |-  ( ( j  e.  x  /\  z  e.  ( {
j }  X.  B
) )  ->  ( 1st `  z )  e.  x )
132131rexlimiva 3028 . . . . . . . . . 10  |-  ( E. j  e.  x  z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
133126, 132sylbi 207 . . . . . . . . 9  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
134 xp1st 7198 . . . . . . . . 9  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( 1st `  z )  e.  {
y } )
135133, 134anim12i 590 . . . . . . . 8  |-  ( ( z  e.  U_ j  e.  x  ( {
j }  X.  B
)  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
136 elin 3796 . . . . . . . 8  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  <->  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  /\  z  e.  ( { y }  X.  [_ y  / 
j ]_ B ) ) )
137 elin 3796 . . . . . . . 8  |-  ( ( 1st `  z )  e.  ( x  i^i 
{ y } )  <-> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
138135, 136, 1373imtr4i 281 . . . . . . 7  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  ->  ( 1st `  z )  e.  ( x  i^i  {
y } ) )
139115eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  <->  ( 1st `  z
)  e.  (/) ) )
140 noel 3919 . . . . . . . . 9  |-  -.  ( 1st `  z )  e.  (/)
141140pm2.21i 116 . . . . . . . 8  |-  ( ( 1st `  z )  e.  (/)  ->  z  e.  (/) )
142139, 141syl6bi 243 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  ->  z  e.  (/) ) )
143138, 142syl5 34 . . . . . 6  |-  ( ph  ->  ( z  e.  (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
z  e.  (/) ) )
144143ssrdv 3609 . . . . 5  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  C_  (/) )
145 ss0 3974 . . . . 5  |-  ( (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  C_  (/) 
->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
146144, 145syl 17 . . . 4  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
147 iunxun 4605 . . . . . 6  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )
148 nfcv 2764 . . . . . . . . 9  |-  F/_ m
( { j }  X.  B )
149 nfcv 2764 . . . . . . . . . 10  |-  F/_ j { m }
150149, 5nfxp 5142 . . . . . . . . 9  |-  F/_ j
( { m }  X.  [_ m  /  j ]_ B )
151 sneq 4187 . . . . . . . . . 10  |-  ( j  =  m  ->  { j }  =  { m } )
152151, 8xpeq12d 5140 . . . . . . . . 9  |-  ( j  =  m  ->  ( { j }  X.  B )  =  ( { m }  X.  [_ m  /  j ]_ B ) )
153148, 150, 152cbviun 4557 . . . . . . . 8  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  U_ m  e.  { y }  ( { m }  X.  [_ m  / 
j ]_ B )
154 sneq 4187 . . . . . . . . . 10  |-  ( m  =  y  ->  { m }  =  { y } )
155154, 38xpeq12d 5140 . . . . . . . . 9  |-  ( m  =  y  ->  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B ) )
15615, 155iunxsn 4603 . . . . . . . 8  |-  U_ m  e.  { y }  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B )
157153, 156eqtri 2644 . . . . . . 7  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  ( { y }  X.  [_ y  /  j ]_ B )
158157uneq2i 3764 . . . . . 6  |-  ( U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
159147, 158eqtri 2644 . . . . 5  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
160159a1i 11 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) ) )
161 snfi 8038 . . . . . . 7  |-  { j }  e.  Fin
162120, 18syldan 487 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  B  e.  Fin )
163 xpfi 8231 . . . . . . 7  |-  ( ( { j }  e.  Fin  /\  B  e.  Fin )  ->  ( { j }  X.  B )  e.  Fin )
164161, 162, 163sylancr 695 . . . . . 6  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( { j }  X.  B )  e. 
Fin )
165164ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
166 iunfi 8254 . . . . 5  |-  ( ( ( x  u.  {
y } )  e. 
Fin  /\  A. j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  e.  Fin )  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
167119, 165, 166syl2anc 693 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
168 eliun 4524 . . . . . 6  |-  ( z  e.  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  <->  E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B ) )
169 elxp 5131 . . . . . . . 8  |-  ( z  e.  ( { j }  X.  B )  <->  E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { j }  /\  k  e.  B ) ) )
170 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. m ,  k >. )
171 simprrl 804 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  e.  {
j } )
172 elsni 4194 . . . . . . . . . . . . . . 15  |-  ( m  e.  { j }  ->  m  =  j )
173171, 172syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  =  j )
174173opeq1d 4408 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  <. m ,  k
>.  =  <. j ,  k >. )
175170, 174eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. j ,  k >. )
176175, 89syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  =  C )
177 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  ph )
178120adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  j  e.  A
)
179 simprrr 805 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  k  e.  B
)
180177, 178, 179, 26syl12anc 1324 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  C  e.  CC )
181176, 180eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  e.  CC )
182181ex 450 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
183182exlimdvv 1862 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( E. m E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
184169, 183syl5bi 232 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
185184rexlimdva 3031 . . . . . 6  |-  ( ph  ->  ( E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
186168, 185syl5bi 232 . . . . 5  |-  ( ph  ->  ( z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B )  ->  D  e.  CC )
)
187186imp 445 . . . 4  |-  ( (
ph  /\  z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )  ->  D  e.  CC )
188146, 160, 167, 187fprodsplit 14696 . . 3  |-  ( ph  ->  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
189188adantr 481 . 2  |-  ( (
ph  /\  ps )  ->  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
190112, 125, 1893eqtr4d 2666 1  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   [_csb 3533    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520    X. cxp 5112    |` cres 5116   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   CCcc 9934    x. cmul 9941   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fprod2d  14711
  Copyright terms: Public domain W3C validator