Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepdm Structured version   Visualization version   Unicode version

Theorem nosepdm 31834
Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepdm  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  ( dom  A  u.  dom  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nosepdm
StepHypRef Expression
1 sltso 31827 . . . 4  |-  <s  Or  No
2 sotrine 31658 . . . 4  |-  ( ( <s  Or  No  /\  ( A  e.  No  /\  B  e.  No ) )  ->  ( A  =/=  B  <->  ( A <s B  \/  B <s A ) ) )
31, 2mpan 706 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A  =/=  B  <->  ( A <s B  \/  B <s
A ) ) )
4 nosepdmlem 31833 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  A <s B )  ->  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  ( dom  A  u.  dom  B ) )
543expa 1265 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  ( dom  A  u.  dom  B ) )
6 simplr 792 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  B <s
A )  ->  B  e.  No )
7 simpll 790 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  B <s
A )  ->  A  e.  No )
8 simpr 477 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  B <s
A )  ->  B <s A )
9 nosepdmlem 31833 . . . . . . 7  |-  ( ( B  e.  No  /\  A  e.  No  /\  B <s A )  ->  |^| { x  e.  On  |  ( B `  x )  =/=  ( A `  x ) }  e.  ( dom  B  u.  dom  A ) )
106, 7, 8, 9syl3anc 1326 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  B <s
A )  ->  |^| { x  e.  On  |  ( B `
 x )  =/=  ( A `  x
) }  e.  ( dom  B  u.  dom  A ) )
11 necom 2847 . . . . . . . . 9  |-  ( ( A `  x )  =/=  ( B `  x )  <->  ( B `  x )  =/=  ( A `  x )
)
1211a1i 11 . . . . . . . 8  |-  ( x  e.  On  ->  (
( A `  x
)  =/=  ( B `
 x )  <->  ( B `  x )  =/=  ( A `  x )
) )
1312rabbiia 3185 . . . . . . 7  |-  { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  =  {
x  e.  On  | 
( B `  x
)  =/=  ( A `
 x ) }
1413inteqi 4479 . . . . . 6  |-  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  =  |^| { x  e.  On  | 
( B `  x
)  =/=  ( A `
 x ) }
15 uncom 3757 . . . . . 6  |-  ( dom 
A  u.  dom  B
)  =  ( dom 
B  u.  dom  A
)
1610, 14, 153eltr4g 2718 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  B <s
A )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  ( dom  A  u.  dom  B ) )
175, 16jaodan 826 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A <s B  \/  B <s A ) )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  ( dom  A  u.  dom  B ) )
1817ex 450 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A <s B  \/  B <s A )  ->  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  ( dom  A  u.  dom  B ) ) )
193, 18sylbid 230 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A  =/=  B  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  ( dom  A  u.  dom  B ) ) )
20193impia 1261 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  ( dom  A  u.  dom  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   {crab 2916    u. cun 3572   |^|cint 4475   class class class wbr 4653    Or wor 5034   dom cdm 5114   Oncon0 5723   ` cfv 5888   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nodenselem5  31838  noresle  31846
  Copyright terms: Public domain W3C validator