Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepdmlem Structured version   Visualization version   Unicode version

Theorem nosepdmlem 31833
Description: Lemma for nosepdm 31834. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepdmlem  |-  ( ( A  e.  No  /\  B  e.  No  /\  A <s B )  ->  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  ( dom  A  u.  dom  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nosepdmlem
StepHypRef Expression
1 sltval2 31809 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } ) ) )
2 fvex 6201 . . . . . . 7  |-  ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  e. 
_V
3 fvex 6201 . . . . . . 7  |-  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  e. 
_V
42, 3brtp 31639 . . . . . 6  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  <->  ( (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
5 df-3or 1038 . . . . . . . . . 10  |-  ( ( ( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  <->  ( (
( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  2o ) ) )
6 ndmfv 6218 . . . . . . . . . . . . 13  |-  ( -. 
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  A  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/) )
7 1on 7567 . . . . . . . . . . . . . . . . . . . 20  |-  1o  e.  On
87elexi 3213 . . . . . . . . . . . . . . . . . . 19  |-  1o  e.  _V
98prid1 4297 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  { 1o ,  2o }
109nosgnn0i 31812 . . . . . . . . . . . . . . . . 17  |-  (/)  =/=  1o
11 neeq1 2856 . . . . . . . . . . . . . . . . 17  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  ( ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/= 
1o 
<->  (/)  =/=  1o ) )
1210, 11mpbiri 248 . . . . . . . . . . . . . . . 16  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =/=  1o )
1312neneqd 2799 . . . . . . . . . . . . . . 15  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  -.  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )
1413intnanrd 963 . . . . . . . . . . . . . 14  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  -.  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) ) )
1513intnanrd 963 . . . . . . . . . . . . . 14  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  -.  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )
16 ioran 511 . . . . . . . . . . . . . 14  |-  ( -.  ( ( ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  <->  ( -.  ( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  /\  -.  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
1714, 15, 16sylanbrc 698 . . . . . . . . . . . . 13  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  -.  ( (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
186, 17syl 17 . . . . . . . . . . . 12  |-  ( -. 
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  A  ->  -.  ( ( ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
1918adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A )  ->  -.  (
( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
20 orel1 397 . . . . . . . . . . 11  |-  ( -.  ( ( ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  -> 
( ( ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  2o ) )  ->  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  2o ) ) )
2119, 20syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A )  ->  ( (
( ( ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  2o ) )  ->  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  2o ) ) )
225, 21syl5bi 232 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A )  ->  ( (
( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  -> 
( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  2o ) ) )
23 ndmfv 6218 . . . . . . . . . . . . 13  |-  ( -. 
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B  -> 
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/) )
24 2on 7568 . . . . . . . . . . . . . . . . 17  |-  2o  e.  On
2524elexi 3213 . . . . . . . . . . . . . . . 16  |-  2o  e.  _V
2625prid2 4298 . . . . . . . . . . . . . . 15  |-  2o  e.  { 1o ,  2o }
2726nosgnn0i 31812 . . . . . . . . . . . . . 14  |-  (/)  =/=  2o
28 neeq1 2856 . . . . . . . . . . . . . 14  |-  ( ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  ( ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/= 
2o 
<->  (/)  =/=  2o ) )
2927, 28mpbiri 248 . . . . . . . . . . . . 13  |-  ( ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/)  ->  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =/=  2o )
3023, 29syl 17 . . . . . . . . . . . 12  |-  ( -. 
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B  -> 
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =/=  2o )
3130neneqd 2799 . . . . . . . . . . 11  |-  ( -. 
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B  ->  -.  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  2o )
3231con4i 113 . . . . . . . . . 10  |-  ( ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B )
3332adantl 482 . . . . . . . . 9  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B )
3422, 33syl6 35 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A )  ->  ( (
( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  ->  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B ) )
3534ex 450 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A  ->  ( ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  ->  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B ) ) )
3635com23 86 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  -> 
( -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B ) ) )
374, 36syl5bi 232 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  ->  ( -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B ) ) )
381, 37sylbid 230 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  ( -.  |^|
{ x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  A  ->  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B ) ) )
39383impia 1261 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  A <s B )  -> 
( -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B ) )
4039orrd 393 . 2  |-  ( ( A  e.  No  /\  B  e.  No  /\  A <s B )  -> 
( |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A  \/  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B ) )
41 elun 3753 . 2  |-  ( |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) }  e.  ( dom  A  u.  dom  B )  <->  ( |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) }  e.  dom  A  \/  |^|
{ x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B ) )
4240, 41sylibr 224 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  A <s B )  ->  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  ( dom  A  u.  dom  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    u. cun 3572   (/)c0 3915   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   dom cdm 5114   Oncon0 5723   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fv 5896  df-1o 7560  df-2o 7561  df-slt 31797
This theorem is referenced by:  nosepdm  31834
  Copyright terms: Public domain W3C validator