| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nosepon | Structured version Visualization version Unicode version | ||
| Description: Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| nosepon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 |
. . . . . . . 8
| |
| 2 | 1 | rexbii 3041 |
. . . . . . 7
|
| 3 | 2 | notbii 310 |
. . . . . 6
|
| 4 | dfral2 2994 |
. . . . . 6
| |
| 5 | 3, 4 | bitr4i 267 |
. . . . 5
|
| 6 | nodmord 31806 |
. . . . . . . . . . . . 13
| |
| 7 | nodmord 31806 |
. . . . . . . . . . . . 13
| |
| 8 | ordtri3or 5755 |
. . . . . . . . . . . . 13
| |
| 9 | 6, 7, 8 | syl2an 494 |
. . . . . . . . . . . 12
|
| 10 | 3orass 1040 |
. . . . . . . . . . . . 13
| |
| 11 | or12 545 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | bitri 264 |
. . . . . . . . . . . 12
|
| 13 | 9, 12 | sylib 208 |
. . . . . . . . . . 11
|
| 14 | 13 | ord 392 |
. . . . . . . . . 10
|
| 15 | noseponlem 31817 |
. . . . . . . . . . . 12
| |
| 16 | 15 | 3expia 1267 |
. . . . . . . . . . 11
|
| 17 | noseponlem 31817 |
. . . . . . . . . . . . . 14
| |
| 18 | eqcom 2629 |
. . . . . . . . . . . . . . 15
| |
| 19 | 18 | ralbii 2980 |
. . . . . . . . . . . . . 14
|
| 20 | 17, 19 | sylnibr 319 |
. . . . . . . . . . . . 13
|
| 21 | 20 | 3expia 1267 |
. . . . . . . . . . . 12
|
| 22 | 21 | ancoms 469 |
. . . . . . . . . . 11
|
| 23 | 16, 22 | jaod 395 |
. . . . . . . . . 10
|
| 24 | 14, 23 | syld 47 |
. . . . . . . . 9
|
| 25 | 24 | con4d 114 |
. . . . . . . 8
|
| 26 | 25 | 3impia 1261 |
. . . . . . 7
|
| 27 | ordsson 6989 |
. . . . . . . . . 10
| |
| 28 | ssralv 3666 |
. . . . . . . . . 10
| |
| 29 | 6, 27, 28 | 3syl 18 |
. . . . . . . . 9
|
| 30 | 29 | adantr 481 |
. . . . . . . 8
|
| 31 | 30 | 3impia 1261 |
. . . . . . 7
|
| 32 | nofun 31802 |
. . . . . . . . 9
| |
| 33 | 32 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 34 | nofun 31802 |
. . . . . . . . 9
| |
| 35 | 34 | 3ad2ant2 1083 |
. . . . . . . 8
|
| 36 | eqfunfv 6316 |
. . . . . . . 8
| |
| 37 | 33, 35, 36 | syl2anc 693 |
. . . . . . 7
|
| 38 | 26, 31, 37 | mpbir2and 957 |
. . . . . 6
|
| 39 | 38 | 3expia 1267 |
. . . . 5
|
| 40 | 5, 39 | syl5bi 232 |
. . . 4
|
| 41 | 40 | necon1ad 2811 |
. . 3
|
| 42 | 41 | 3impia 1261 |
. 2
|
| 43 | onintrab2 7002 |
. 2
| |
| 44 | 42, 43 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-2o 7561 df-no 31796 |
| This theorem is referenced by: nosepeq 31835 nosepssdm 31836 nodenselem4 31837 noresle 31846 nosupbnd2lem1 31861 noetalem3 31865 |
| Copyright terms: Public domain | W3C validator |