Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepon Structured version   Visualization version   Unicode version

Theorem nosepon 31818
Description: Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
nosepon  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  On )
Distinct variable groups:    x, A    x, B

Proof of Theorem nosepon
StepHypRef Expression
1 df-ne 2795 . . . . . . . 8  |-  ( ( A `  x )  =/=  ( B `  x )  <->  -.  ( A `  x )  =  ( B `  x ) )
21rexbii 3041 . . . . . . 7  |-  ( E. x  e.  On  ( A `  x )  =/=  ( B `  x
)  <->  E. x  e.  On  -.  ( A `  x
)  =  ( B `
 x ) )
32notbii 310 . . . . . 6  |-  ( -. 
E. x  e.  On  ( A `  x )  =/=  ( B `  x )  <->  -.  E. x  e.  On  -.  ( A `
 x )  =  ( B `  x
) )
4 dfral2 2994 . . . . . 6  |-  ( A. x  e.  On  ( A `  x )  =  ( B `  x )  <->  -.  E. x  e.  On  -.  ( A `
 x )  =  ( B `  x
) )
53, 4bitr4i 267 . . . . 5  |-  ( -. 
E. x  e.  On  ( A `  x )  =/=  ( B `  x )  <->  A. x  e.  On  ( A `  x )  =  ( B `  x ) )
6 nodmord 31806 . . . . . . . . . . . . 13  |-  ( A  e.  No  ->  Ord  dom 
A )
7 nodmord 31806 . . . . . . . . . . . . 13  |-  ( B  e.  No  ->  Ord  dom 
B )
8 ordtri3or 5755 . . . . . . . . . . . . 13  |-  ( ( Ord  dom  A  /\  Ord  dom  B )  -> 
( dom  A  e.  dom  B  \/  dom  A  =  dom  B  \/  dom  B  e.  dom  A ) )
96, 7, 8syl2an 494 . . . . . . . . . . . 12  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( dom  A  e. 
dom  B  \/  dom  A  =  dom  B  \/  dom  B  e.  dom  A
) )
10 3orass 1040 . . . . . . . . . . . . 13  |-  ( ( dom  A  e.  dom  B  \/  dom  A  =  dom  B  \/  dom  B  e.  dom  A )  <-> 
( dom  A  e.  dom  B  \/  ( dom 
A  =  dom  B  \/  dom  B  e.  dom  A ) ) )
11 or12 545 . . . . . . . . . . . . 13  |-  ( ( dom  A  e.  dom  B  \/  ( dom  A  =  dom  B  \/  dom  B  e.  dom  A ) )  <->  ( dom  A  =  dom  B  \/  ( dom  A  e.  dom  B  \/  dom  B  e.  dom  A ) ) )
1210, 11bitri 264 . . . . . . . . . . . 12  |-  ( ( dom  A  e.  dom  B  \/  dom  A  =  dom  B  \/  dom  B  e.  dom  A )  <-> 
( dom  A  =  dom  B  \/  ( dom 
A  e.  dom  B  \/  dom  B  e.  dom  A ) ) )
139, 12sylib 208 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( dom  A  =  dom  B  \/  ( dom  A  e.  dom  B  \/  dom  B  e.  dom  A ) ) )
1413ord 392 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( -.  dom  A  =  dom  B  ->  ( dom  A  e.  dom  B  \/  dom  B  e.  dom  A ) ) )
15 noseponlem 31817 . . . . . . . . . . . 12  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) )
16153expia 1267 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( dom  A  e. 
dom  B  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) ) )
17 noseponlem 31817 . . . . . . . . . . . . . 14  |-  ( ( B  e.  No  /\  A  e.  No  /\  dom  B  e.  dom  A )  ->  -.  A. x  e.  On  ( B `  x )  =  ( A `  x ) )
18 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( ( A `  x )  =  ( B `  x )  <->  ( B `  x )  =  ( A `  x ) )
1918ralbii 2980 . . . . . . . . . . . . . 14  |-  ( A. x  e.  On  ( A `  x )  =  ( B `  x )  <->  A. x  e.  On  ( B `  x )  =  ( A `  x ) )
2017, 19sylnibr 319 . . . . . . . . . . . . 13  |-  ( ( B  e.  No  /\  A  e.  No  /\  dom  B  e.  dom  A )  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) )
21203expia 1267 . . . . . . . . . . . 12  |-  ( ( B  e.  No  /\  A  e.  No )  ->  ( dom  B  e. 
dom  A  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) ) )
2221ancoms 469 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( dom  B  e. 
dom  A  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) ) )
2316, 22jaod 395 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( dom  A  e.  dom  B  \/  dom  B  e.  dom  A )  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) ) )
2414, 23syld 47 . . . . . . . . 9  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( -.  dom  A  =  dom  B  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) ) )
2524con4d 114 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A. x  e.  On  ( A `  x )  =  ( B `  x )  ->  dom  A  =  dom  B ) )
26253impia 1261 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No  /\  A. x  e.  On  ( A `  x )  =  ( B `  x ) )  ->  dom  A  =  dom  B
)
27 ordsson 6989 . . . . . . . . . 10  |-  ( Ord 
dom  A  ->  dom  A  C_  On )
28 ssralv 3666 . . . . . . . . . 10  |-  ( dom 
A  C_  On  ->  ( A. x  e.  On  ( A `  x )  =  ( B `  x )  ->  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) ) )
296, 27, 283syl 18 . . . . . . . . 9  |-  ( A  e.  No  ->  ( A. x  e.  On  ( A `  x )  =  ( B `  x )  ->  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) ) )
3029adantr 481 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A. x  e.  On  ( A `  x )  =  ( B `  x )  ->  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) ) )
31303impia 1261 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No  /\  A. x  e.  On  ( A `  x )  =  ( B `  x ) )  ->  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) )
32 nofun 31802 . . . . . . . . 9  |-  ( A  e.  No  ->  Fun  A )
33323ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No  /\  A. x  e.  On  ( A `  x )  =  ( B `  x ) )  ->  Fun  A )
34 nofun 31802 . . . . . . . . 9  |-  ( B  e.  No  ->  Fun  B )
35343ad2ant2 1083 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No  /\  A. x  e.  On  ( A `  x )  =  ( B `  x ) )  ->  Fun  B )
36 eqfunfv 6316 . . . . . . . 8  |-  ( ( Fun  A  /\  Fun  B )  ->  ( A  =  B  <->  ( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `  x )  =  ( B `  x ) ) ) )
3733, 35, 36syl2anc 693 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No  /\  A. x  e.  On  ( A `  x )  =  ( B `  x ) )  -> 
( A  =  B  <-> 
( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) ) ) )
3826, 31, 37mpbir2and 957 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  A. x  e.  On  ( A `  x )  =  ( B `  x ) )  ->  A  =  B )
39383expia 1267 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A. x  e.  On  ( A `  x )  =  ( B `  x )  ->  A  =  B ) )
405, 39syl5bi 232 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( -.  E. x  e.  On  ( A `  x )  =/=  ( B `  x )  ->  A  =  B ) )
4140necon1ad 2811 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A  =/=  B  ->  E. x  e.  On  ( A `  x )  =/=  ( B `  x ) ) )
42413impia 1261 . 2  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  E. x  e.  On  ( A `  x )  =/=  ( B `  x )
)
43 onintrab2 7002 . 2  |-  ( E. x  e.  On  ( A `  x )  =/=  ( B `  x
)  <->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  On )
4442, 43sylib 208 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  On )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   |^|cint 4475   dom cdm 5114   Ord word 5722   Oncon0 5723   Fun wfun 5882   ` cfv 5888   Nocsur 31793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796
This theorem is referenced by:  nosepeq  31835  nosepssdm  31836  nodenselem4  31837  noresle  31846  nosupbnd2lem1  31861  noetalem3  31865
  Copyright terms: Public domain W3C validator