Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem10 Structured version   Visualization version   Unicode version

Theorem knoppndvlem10 32512
Description: Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem10.t  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
knoppndvlem10.f  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
knoppndvlem10.a  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
knoppndvlem10.b  |-  B  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( M  +  1 ) )
knoppndvlem10.c  |-  ( ph  ->  C  e.  ( -u
1 (,) 1 ) )
knoppndvlem10.j  |-  ( ph  ->  J  e.  NN0 )
knoppndvlem10.m  |-  ( ph  ->  M  e.  ZZ )
knoppndvlem10.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
knoppndvlem10  |-  ( ph  ->  ( abs `  (
( ( F `  B ) `  J
)  -  ( ( F `  A ) `
 J ) ) )  =  ( ( ( abs `  C
) ^ J )  /  2 ) )
Distinct variable groups:    A, n, y    x, A    B, n, y    x, B    C, n, y    n, J    x, J    n, M, y    x, M   
n, N, y    x, N    T, n, y    ph, n, y
Allowed substitution hints:    ph( x)    C( x)    T( x)    F( x, y, n)    J( y)

Proof of Theorem knoppndvlem10
StepHypRef Expression
1 knoppndvlem10.t . . . . . . 7  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
2 knoppndvlem10.f . . . . . . 7  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
3 knoppndvlem10.b . . . . . . 7  |-  B  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( M  +  1 ) )
4 knoppndvlem10.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( -u
1 (,) 1 ) )
54adantr 481 . . . . . . 7  |-  ( (
ph  /\  2  ||  M )  ->  C  e.  ( -u 1 (,) 1 ) )
6 knoppndvlem10.j . . . . . . . 8  |-  ( ph  ->  J  e.  NN0 )
76adantr 481 . . . . . . 7  |-  ( (
ph  /\  2  ||  M )  ->  J  e.  NN0 )
8 knoppndvlem10.m . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
98peano2zd 11485 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
109adantr 481 . . . . . . 7  |-  ( (
ph  /\  2  ||  M )  ->  ( M  +  1 )  e.  ZZ )
11 knoppndvlem10.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1211adantr 481 . . . . . . 7  |-  ( (
ph  /\  2  ||  M )  ->  N  e.  NN )
13 notnot 136 . . . . . . . . 9  |-  ( 2 
||  M  ->  -.  -.  2  ||  M )
1413adantl 482 . . . . . . . 8  |-  ( (
ph  /\  2  ||  M )  ->  -.  -.  2  ||  M )
158adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  2  ||  M )  ->  M  e.  ZZ )
16 oddp1even 15068 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  <->  2  ||  ( M  +  1
) ) )
1715, 16syl 17 . . . . . . . 8  |-  ( (
ph  /\  2  ||  M )  ->  ( -.  2  ||  M  <->  2  ||  ( M  +  1
) ) )
1814, 17mtbid 314 . . . . . . 7  |-  ( (
ph  /\  2  ||  M )  ->  -.  2  ||  ( M  + 
1 ) )
191, 2, 3, 5, 7, 10, 12, 18knoppndvlem9 32511 . . . . . 6  |-  ( (
ph  /\  2  ||  M )  ->  (
( F `  B
) `  J )  =  ( ( C ^ J )  / 
2 ) )
20 knoppndvlem10.a . . . . . . 7  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
2114notnotrd 128 . . . . . . 7  |-  ( (
ph  /\  2  ||  M )  ->  2  ||  M )
221, 2, 20, 5, 7, 15, 12, 21knoppndvlem8 32510 . . . . . 6  |-  ( (
ph  /\  2  ||  M )  ->  (
( F `  A
) `  J )  =  0 )
2319, 22oveq12d 6668 . . . . 5  |-  ( (
ph  /\  2  ||  M )  ->  (
( ( F `  B ) `  J
)  -  ( ( F `  A ) `
 J ) )  =  ( ( ( C ^ J )  /  2 )  - 
0 ) )
244knoppndvlem3 32505 . . . . . . . . . . 11  |-  ( ph  ->  ( C  e.  RR  /\  ( abs `  C
)  <  1 ) )
2524simpld 475 . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR )
2625recnd 10068 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
2726, 6expcld 13008 . . . . . . . 8  |-  ( ph  ->  ( C ^ J
)  e.  CC )
28 2cnd 11093 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
29 2ne0 11113 . . . . . . . . 9  |-  2  =/=  0
3029a1i 11 . . . . . . . 8  |-  ( ph  ->  2  =/=  0 )
3127, 28, 30divcld 10801 . . . . . . 7  |-  ( ph  ->  ( ( C ^ J )  /  2
)  e.  CC )
3231subid1d 10381 . . . . . 6  |-  ( ph  ->  ( ( ( C ^ J )  / 
2 )  -  0 )  =  ( ( C ^ J )  /  2 ) )
3332adantr 481 . . . . 5  |-  ( (
ph  /\  2  ||  M )  ->  (
( ( C ^ J )  /  2
)  -  0 )  =  ( ( C ^ J )  / 
2 ) )
3423, 33eqtrd 2656 . . . 4  |-  ( (
ph  /\  2  ||  M )  ->  (
( ( F `  B ) `  J
)  -  ( ( F `  A ) `
 J ) )  =  ( ( C ^ J )  / 
2 ) )
3534fveq2d 6195 . . 3  |-  ( (
ph  /\  2  ||  M )  ->  ( abs `  ( ( ( F `  B ) `
 J )  -  ( ( F `  A ) `  J
) ) )  =  ( abs `  (
( C ^ J
)  /  2 ) ) )
363a1i 11 . . . . . . . . 9  |-  ( ph  ->  B  =  ( ( ( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  ( M  + 
1 ) ) )
376nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  J  e.  ZZ )
3811, 37, 9knoppndvlem1 32503 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( M  +  1 ) )  e.  RR )
3936, 38eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
401, 2, 11, 25, 39, 6knoppcnlem3 32485 . . . . . . 7  |-  ( ph  ->  ( ( F `  B ) `  J
)  e.  RR )
4140recnd 10068 . . . . . 6  |-  ( ph  ->  ( ( F `  B ) `  J
)  e.  CC )
4220a1i 11 . . . . . . . . 9  |-  ( ph  ->  A  =  ( ( ( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  M ) )
4311, 37, 8knoppndvlem1 32503 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )  e.  RR )
4442, 43eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
451, 2, 11, 25, 44, 6knoppcnlem3 32485 . . . . . . 7  |-  ( ph  ->  ( ( F `  A ) `  J
)  e.  RR )
4645recnd 10068 . . . . . 6  |-  ( ph  ->  ( ( F `  A ) `  J
)  e.  CC )
4741, 46abssubd 14192 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( F `  B ) `  J
)  -  ( ( F `  A ) `
 J ) ) )  =  ( abs `  ( ( ( F `
 A ) `  J )  -  (
( F `  B
) `  J )
) ) )
4847adantr 481 . . . 4  |-  ( (
ph  /\  -.  2  ||  M )  ->  ( abs `  ( ( ( F `  B ) `
 J )  -  ( ( F `  A ) `  J
) ) )  =  ( abs `  (
( ( F `  A ) `  J
)  -  ( ( F `  B ) `
 J ) ) ) )
494adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  2  ||  M )  ->  C  e.  ( -u 1 (,) 1 ) )
506adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  2  ||  M )  ->  J  e.  NN0 )
518adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  2  ||  M )  ->  M  e.  ZZ )
5211adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  2  ||  M )  ->  N  e.  NN )
53 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  -.  2  ||  M )  ->  -.  2  ||  M )
541, 2, 20, 49, 50, 51, 52, 53knoppndvlem9 32511 . . . . . . 7  |-  ( (
ph  /\  -.  2  ||  M )  ->  (
( F `  A
) `  J )  =  ( ( C ^ J )  / 
2 ) )
559adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  2  ||  M )  ->  ( M  +  1 )  e.  ZZ )
5651, 16syl 17 . . . . . . . . 9  |-  ( (
ph  /\  -.  2  ||  M )  ->  ( -.  2  ||  M  <->  2  ||  ( M  +  1
) ) )
5753, 56mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  -.  2  ||  M )  ->  2  ||  ( M  +  1 ) )
581, 2, 3, 49, 50, 55, 52, 57knoppndvlem8 32510 . . . . . . 7  |-  ( (
ph  /\  -.  2  ||  M )  ->  (
( F `  B
) `  J )  =  0 )
5954, 58oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  -.  2  ||  M )  ->  (
( ( F `  A ) `  J
)  -  ( ( F `  B ) `
 J ) )  =  ( ( ( C ^ J )  /  2 )  - 
0 ) )
6032adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  2  ||  M )  ->  (
( ( C ^ J )  /  2
)  -  0 )  =  ( ( C ^ J )  / 
2 ) )
6159, 60eqtrd 2656 . . . . 5  |-  ( (
ph  /\  -.  2  ||  M )  ->  (
( ( F `  A ) `  J
)  -  ( ( F `  B ) `
 J ) )  =  ( ( C ^ J )  / 
2 ) )
6261fveq2d 6195 . . . 4  |-  ( (
ph  /\  -.  2  ||  M )  ->  ( abs `  ( ( ( F `  A ) `
 J )  -  ( ( F `  B ) `  J
) ) )  =  ( abs `  (
( C ^ J
)  /  2 ) ) )
6348, 62eqtrd 2656 . . 3  |-  ( (
ph  /\  -.  2  ||  M )  ->  ( abs `  ( ( ( F `  B ) `
 J )  -  ( ( F `  A ) `  J
) ) )  =  ( abs `  (
( C ^ J
)  /  2 ) ) )
6435, 63pm2.61dan 832 . 2  |-  ( ph  ->  ( abs `  (
( ( F `  B ) `  J
)  -  ( ( F `  A ) `
 J ) ) )  =  ( abs `  ( ( C ^ J )  /  2
) ) )
6527, 28, 30absdivd 14194 . . 3  |-  ( ph  ->  ( abs `  (
( C ^ J
)  /  2 ) )  =  ( ( abs `  ( C ^ J ) )  /  ( abs `  2
) ) )
6626, 6absexpd 14191 . . . 4  |-  ( ph  ->  ( abs `  ( C ^ J ) )  =  ( ( abs `  C ) ^ J
) )
67 0le2 11111 . . . . . 6  |-  0  <_  2
68 2re 11090 . . . . . . 7  |-  2  e.  RR
6968absidi 14117 . . . . . 6  |-  ( 0  <_  2  ->  ( abs `  2 )  =  2 )
7067, 69ax-mp 5 . . . . 5  |-  ( abs `  2 )  =  2
7170a1i 11 . . . 4  |-  ( ph  ->  ( abs `  2
)  =  2 )
7266, 71oveq12d 6668 . . 3  |-  ( ph  ->  ( ( abs `  ( C ^ J ) )  /  ( abs `  2
) )  =  ( ( ( abs `  C
) ^ J )  /  2 ) )
7365, 72eqtrd 2656 . 2  |-  ( ph  ->  ( abs `  (
( C ^ J
)  /  2 ) )  =  ( ( ( abs `  C
) ^ J )  /  2 ) )
7464, 73eqtrd 2656 1  |-  ( ph  ->  ( abs `  (
( ( F `  B ) `  J
)  -  ( ( F `  A ) `
 J ) ) )  =  ( ( ( abs `  C
) ^ J )  /  2 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   (,)cioo 12175   |_cfl 12591   ^cexp 12860   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  knoppndvlem15  32517
  Copyright terms: Public domain W3C validator