Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem5 Structured version   Visualization version   Unicode version

Theorem stirlinglem5 40295
Description: If  T is between  0 and  1, then a series (without alternating negative and positive terms) is given that converges to log (1+T)/(1-T) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem5.1  |-  D  =  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) )
stirlinglem5.2  |-  E  =  ( j  e.  NN  |->  ( ( T ^
j )  /  j
) )
stirlinglem5.3  |-  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) )
stirlinglem5.4  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
stirlinglem5.5  |-  G  =  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )
stirlinglem5.6  |-  ( ph  ->  T  e.  RR+ )
stirlinglem5.7  |-  ( ph  ->  ( abs `  T
)  <  1 )
Assertion
Ref Expression
stirlinglem5  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( 1  +  T )  /  (
1  -  T ) ) ) )
Distinct variable groups:    ph, j    T, j
Allowed substitution hints:    D( j)    E( j)    F( j)    G( j)    H( j)

Proof of Theorem stirlinglem5
Dummy variables  k 
i  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
3 stirlinglem5.1 . . . . . . . . 9  |-  D  =  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) )
43a1i 11 . . . . . . . 8  |-  ( ph  ->  D  =  ( j  e.  NN  |->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) ) ) )
5 1cnd 10056 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN )  ->  1  e.  CC )
65negcld 10379 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  -u 1  e.  CC )
7 nnm1nn0 11334 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  (
j  -  1 )  e.  NN0 )
87adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  ( j  -  1 )  e. 
NN0 )
96, 8expcld 13008 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  ( -u
1 ^ ( j  -  1 ) )  e.  CC )
10 nncn 11028 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  j  e.  CC )
1110adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  CC )
12 stirlinglem5.6 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  e.  RR+ )
1312rpred 11872 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  RR )
1413recnd 10068 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  CC )
1514adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  T  e.  CC )
16 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  j  e.  NN0 )
1716adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  j  e. 
NN0 )
1815, 17expcld 13008 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  ( T ^ j )  e.  CC )
19 nnne0 11053 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  j  =/=  0 )
2019adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  j  =/=  0 )
219, 11, 18, 20div32d 10824 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( ( -u 1 ^ ( j  -  1 ) )  /  j
)  x.  ( T ^ j ) )  =  ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) ) )
225, 15pncan2d 10394 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( 1  +  T )  -  1 )  =  T )
2322eqcomd 2628 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  T  =  ( ( 1  +  T )  -  1 ) )
2423oveq1d 6665 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  ( T ^ j )  =  ( ( ( 1  +  T )  - 
1 ) ^ j
) )
2524oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( ( -u 1 ^ ( j  -  1 ) )  /  j
)  x.  ( T ^ j ) )  =  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) )
2621, 25eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) )  =  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) )
2726mpteq2dva 4744 . . . . . . . 8  |-  ( ph  ->  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) )  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  - 
1 ) ^ j
) ) ) )
284, 27eqtrd 2656 . . . . . . 7  |-  ( ph  ->  D  =  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  -  1 ) )  /  j
)  x.  ( ( ( 1  +  T
)  -  1 ) ^ j ) ) ) )
2928seqeq3d 12809 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  D )  =  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) ) ) )
30 1cnd 10056 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
3130, 14addcld 10059 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  T
)  e.  CC )
32 eqid 2622 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3332cnmetdval 22574 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( 1  +  T
)  e.  CC )  ->  ( 1 ( abs  o.  -  )
( 1  +  T
) )  =  ( abs `  ( 1  -  ( 1  +  T ) ) ) )
3430, 31, 33syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( 1 ( abs 
o.  -  ) (
1  +  T ) )  =  ( abs `  ( 1  -  (
1  +  T ) ) ) )
35 1m1e0 11089 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
3635a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  -  1 )  =  0 )
3736oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  -  1 )  -  T
)  =  ( 0  -  T ) )
3830, 30, 14subsub4d 10423 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  -  1 )  -  T
)  =  ( 1  -  ( 1  +  T ) ) )
39 df-neg 10269 . . . . . . . . . . . . . 14  |-  -u T  =  ( 0  -  T )
4039eqcomi 2631 . . . . . . . . . . . . 13  |-  ( 0  -  T )  = 
-u T
4140a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  -  T
)  =  -u T
)
4237, 38, 413eqtr3d 2664 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  -  (
1  +  T ) )  =  -u T
)
4342fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  (
1  -  ( 1  +  T ) ) )  =  ( abs `  -u T ) )
4414absnegd 14188 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  -u T
)  =  ( abs `  T ) )
45 stirlinglem5.7 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  T
)  <  1 )
4644, 45eqbrtrd 4675 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  -u T
)  <  1 )
4743, 46eqbrtrd 4675 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
1  -  ( 1  +  T ) ) )  <  1 )
4834, 47eqbrtrd 4675 . . . . . . . 8  |-  ( ph  ->  ( 1 ( abs 
o.  -  ) (
1  +  T ) )  <  1 )
49 cnxmet 22576 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
5049a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
51 1red 10055 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
5251rexrd 10089 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR* )
53 elbl2 22195 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  RR* )  /\  ( 1  e.  CC  /\  ( 1  +  T )  e.  CC ) )  -> 
( ( 1  +  T )  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( 1 ( abs  o.  -  ) ( 1  +  T ) )  <  1 ) )
5450, 52, 30, 31, 53syl22anc 1327 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  T )  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( 1 ( abs  o.  -  ) ( 1  +  T ) )  <  1 ) )
5548, 54mpbird 247 . . . . . . 7  |-  ( ph  ->  ( 1  +  T
)  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 ) )
56 eqid 2622 . . . . . . . 8  |-  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  =  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )
5756logtayl2 24408 . . . . . . 7  |-  ( ( 1  +  T )  e.  ( 1 (
ball `  ( abs  o. 
-  ) ) 1 )  ->  seq 1
(  +  ,  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  - 
1 ) )  / 
j )  x.  (
( ( 1  +  T )  -  1 ) ^ j ) ) ) )  ~~>  ( log `  ( 1  +  T
) ) )
5855, 57syl 17 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) ) )  ~~>  ( log `  (
1  +  T ) ) )
5929, 58eqbrtrd 4675 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  D )  ~~>  ( log `  ( 1  +  T
) ) )
60 seqex 12803 . . . . . 6  |-  seq 1
(  +  ,  F
)  e.  _V
6160a1i 11 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  F )  e. 
_V )
62 stirlinglem5.2 . . . . . . . 8  |-  E  =  ( j  e.  NN  |->  ( ( T ^
j )  /  j
) )
6362a1i 11 . . . . . . 7  |-  ( ph  ->  E  =  ( j  e.  NN  |->  ( ( T ^ j )  /  j ) ) )
6463seqeq3d 12809 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  E )  =  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( T ^ j )  / 
j ) ) ) )
65 logtayl 24406 . . . . . . 7  |-  ( ( T  e.  CC  /\  ( abs `  T )  <  1 )  ->  seq 1 (  +  , 
( j  e.  NN  |->  ( ( T ^
j )  /  j
) ) )  ~~>  -u ( log `  ( 1  -  T ) ) )
6614, 45, 65syl2anc 693 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( T ^ j )  / 
j ) ) )  ~~> 
-u ( log `  (
1  -  T ) ) )
6764, 66eqbrtrd 4675 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  E )  ~~>  -u ( log `  ( 1  -  T ) ) )
68 simpr 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
6968, 1syl6eleq 2711 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
703a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  D  =  ( j  e.  NN  |->  ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) ) ) )
71 oveq1 6657 . . . . . . . . . . 11  |-  ( j  =  n  ->  (
j  -  1 )  =  ( n  - 
1 ) )
7271oveq2d 6666 . . . . . . . . . 10  |-  ( j  =  n  ->  ( -u 1 ^ ( j  -  1 ) )  =  ( -u 1 ^ ( n  - 
1 ) ) )
73 oveq2 6658 . . . . . . . . . . 11  |-  ( j  =  n  ->  ( T ^ j )  =  ( T ^ n
) )
74 id 22 . . . . . . . . . . 11  |-  ( j  =  n  ->  j  =  n )
7573, 74oveq12d 6668 . . . . . . . . . 10  |-  ( j  =  n  ->  (
( T ^ j
)  /  j )  =  ( ( T ^ n )  /  n ) )
7672, 75oveq12d 6668 . . . . . . . . 9  |-  ( j  =  n  ->  (
( -u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) )  =  ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) ) )
7776adantl 482 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  n  e.  (
1 ... k ) )  /\  j  =  n )  ->  ( ( -u 1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  =  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) ) )
78 elfznn 12370 . . . . . . . . 9  |-  ( n  e.  ( 1 ... k )  ->  n  e.  NN )
7978adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  NN )
80 1cnd 10056 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  e.  CC )
8180negcld 10379 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  -u 1  e.  CC )
82 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
8381, 82expcld 13008 . . . . . . . . . 10  |-  ( n  e.  NN  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
8479, 83syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
8514ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  T  e.  CC )
8679nnnn0d 11351 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  NN0 )
8785, 86expcld 13008 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( T ^ n )  e.  CC )
8879nncnd 11036 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  CC )
8979nnne0d 11065 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  =/=  0 )
9087, 88, 89divcld 10801 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( T ^ n
)  /  n )  e.  CC )
9184, 90mulcld 10060 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( -u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  e.  CC )
9270, 77, 79, 91fvmptd 6288 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( D `  n )  =  ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) ) )
9392, 91eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( D `  n )  e.  CC )
94 addcl 10018 . . . . . . 7  |-  ( ( n  e.  CC  /\  i  e.  CC )  ->  ( n  +  i )  e.  CC )
9594adantl 482 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  CC  /\  i  e.  CC )
)  ->  ( n  +  i )  e.  CC )
9669, 93, 95seqcl 12821 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  D ) `  k
)  e.  CC )
9762a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  E  =  ( j  e.  NN  |->  ( ( T ^ j )  / 
j ) ) )
9875adantl 482 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  n  e.  (
1 ... k ) )  /\  j  =  n )  ->  ( ( T ^ j )  / 
j )  =  ( ( T ^ n
)  /  n ) )
9997, 98, 79, 90fvmptd 6288 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( E `  n )  =  ( ( T ^ n )  /  n ) )
10099, 90eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( E `  n )  e.  CC )
10169, 100, 95seqcl 12821 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  E ) `  k
)  e.  CC )
102 simpll 790 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ph )
103 stirlinglem5.3 . . . . . . . . . 10  |-  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) )
104103a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) ) )
10576, 75oveq12d 6668 . . . . . . . . . 10  |-  ( j  =  n  ->  (
( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) )  +  ( ( T ^ j
)  /  j ) )  =  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
106105adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  j  =  n )  ->  (
( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) )  +  ( ( T ^ j
)  /  j ) )  =  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
107 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
10883adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( -u
1 ^ ( n  -  1 ) )  e.  CC )
10914adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  T  e.  CC )
110107nnnn0d 11351 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
111109, 110expcld 13008 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( T ^ n )  e.  CC )
112107nncnd 11036 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
113107nnne0d 11065 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  =/=  0 )
114111, 112, 113divcld 10801 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( T ^ n )  /  n )  e.  CC )
115108, 114mulcld 10060 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
-u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  e.  CC )
116115, 114addcld 10059 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  e.  CC )
117104, 106, 107, 116fvmptd 6288 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  +  ( ( T ^
n )  /  n
) ) )
1183a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  D  =  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) ) )
11976adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  j  =  n )  ->  (
( -u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) )  =  ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) ) )
120118, 119, 107, 115fvmptd 6288 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( D `
 n )  =  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) ) )
121120eqcomd 2628 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
-u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  =  ( D `  n ) )
12262a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  E  =  ( j  e.  NN  |->  ( ( T ^
j )  /  j
) ) )
12375adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  j  =  n )  ->  (
( T ^ j
)  /  j )  =  ( ( T ^ n )  /  n ) )
124122, 123, 107, 114fvmptd 6288 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( E `
 n )  =  ( ( T ^
n )  /  n
) )
125124eqcomd 2628 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( T ^ n )  /  n )  =  ( E `  n
) )
126121, 125oveq12d 6668 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  =  ( ( D `
 n )  +  ( E `  n
) ) )
127117, 126eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( ( D `  n )  +  ( E `  n ) ) )
128102, 79, 127syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( F `  n )  =  ( ( D `
 n )  +  ( E `  n
) ) )
12969, 93, 100, 128seradd 12843 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `  k
)  =  ( (  seq 1 (  +  ,  D ) `  k )  +  (  seq 1 (  +  ,  E ) `  k ) ) )
1301, 2, 59, 61, 67, 96, 101, 129climadd 14362 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  ( ( log `  ( 1  +  T ) )  +  -u ( log `  (
1  -  T ) ) ) )
131 1rp 11836 . . . . . . . . 9  |-  1  e.  RR+
132131a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  RR+ )
133132, 12rpaddcld 11887 . . . . . . 7  |-  ( ph  ->  ( 1  +  T
)  e.  RR+ )
134133rpne0d 11877 . . . . . 6  |-  ( ph  ->  ( 1  +  T
)  =/=  0 )
13531, 134logcld 24317 . . . . 5  |-  ( ph  ->  ( log `  (
1  +  T ) )  e.  CC )
13630, 14subcld 10392 . . . . . 6  |-  ( ph  ->  ( 1  -  T
)  e.  CC )
13713, 51absltd 14168 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  T
)  <  1  <->  ( -u 1  <  T  /\  T  <  1 ) ) )
13845, 137mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( -u 1  < 
T  /\  T  <  1 ) )
139138simprd 479 . . . . . . . 8  |-  ( ph  ->  T  <  1 )
14013, 139gtned 10172 . . . . . . 7  |-  ( ph  ->  1  =/=  T )
14130, 14, 140subne0d 10401 . . . . . 6  |-  ( ph  ->  ( 1  -  T
)  =/=  0 )
142136, 141logcld 24317 . . . . 5  |-  ( ph  ->  ( log `  (
1  -  T ) )  e.  CC )
143135, 142negsubd 10398 . . . 4  |-  ( ph  ->  ( ( log `  (
1  +  T ) )  +  -u ( log `  ( 1  -  T ) ) )  =  ( ( log `  ( 1  +  T
) )  -  ( log `  ( 1  -  T ) ) ) )
144130, 143breqtrd 4679 . . 3  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  ( ( log `  ( 1  +  T ) )  -  ( log `  (
1  -  T ) ) ) )
145 nn0uz 11722 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
146 0zd 11389 . . . 4  |-  ( ph  ->  0  e.  ZZ )
147 stirlinglem5.5 . . . . . 6  |-  G  =  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )
148 2nn0 11309 . . . . . . . . 9  |-  2  e.  NN0
149148a1i 11 . . . . . . . 8  |-  ( j  e.  NN0  ->  2  e. 
NN0 )
150 id 22 . . . . . . . 8  |-  ( j  e.  NN0  ->  j  e. 
NN0 )
151149, 150nn0mulcld 11356 . . . . . . 7  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e. 
NN0 )
152 nn0p1nn 11332 . . . . . . 7  |-  ( ( 2  x.  j )  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  NN )
153151, 152syl 17 . . . . . 6  |-  ( j  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  NN )
154147, 153fmpti 6383 . . . . 5  |-  G : NN0
--> NN
155154a1i 11 . . . 4  |-  ( ph  ->  G : NN0 --> NN )
156 2re 11090 . . . . . . . . 9  |-  2  e.  RR
157156a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  RR )
158 nn0re 11301 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  RR )
159157, 158remulcld 10070 . . . . . . 7  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e.  RR )
160 1red 10055 . . . . . . . . 9  |-  ( k  e.  NN0  ->  1  e.  RR )
161158, 160readdcld 10069 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
162157, 161remulcld 10070 . . . . . . 7  |-  ( k  e.  NN0  ->  ( 2  x.  ( k  +  1 ) )  e.  RR )
163 2rp 11837 . . . . . . . . 9  |-  2  e.  RR+
164163a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  RR+ )
165158ltp1d 10954 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  < 
( k  +  1 ) )
166158, 161, 164, 165ltmul2dd 11928 . . . . . . 7  |-  ( k  e.  NN0  ->  ( 2  x.  k )  < 
( 2  x.  (
k  +  1 ) ) )
167159, 162, 160, 166ltadd1dd 10638 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  < 
( ( 2  x.  ( k  +  1 ) )  +  1 ) )
168147a1i 11 . . . . . . 7  |-  ( k  e.  NN0  ->  G  =  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) ) )
169 simpr 477 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  j  =  k )  ->  j  =  k )
170169oveq2d 6666 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  j  =  k )  ->  ( 2  x.  j
)  =  ( 2  x.  k ) )
171170oveq1d 6665 . . . . . . 7  |-  ( ( k  e.  NN0  /\  j  =  k )  ->  ( ( 2  x.  j )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
172 id 22 . . . . . . 7  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
173 2cnd 11093 . . . . . . . . 9  |-  ( k  e.  NN0  ->  2  e.  CC )
174 nn0cn 11302 . . . . . . . . 9  |-  ( k  e.  NN0  ->  k  e.  CC )
175173, 174mulcld 10060 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e.  CC )
176 1cnd 10056 . . . . . . . 8  |-  ( k  e.  NN0  ->  1  e.  CC )
177175, 176addcld 10059 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  CC )
178168, 171, 172, 177fvmptd 6288 . . . . . 6  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( ( 2  x.  k )  +  1 ) )
179 simpr 477 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  j  =  ( k  +  1 ) )  ->  j  =  ( k  +  1 ) )
180179oveq2d 6666 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  j  =  ( k  +  1 ) )  ->  ( 2  x.  j )  =  ( 2  x.  ( k  +  1 ) ) )
181180oveq1d 6665 . . . . . . 7  |-  ( ( k  e.  NN0  /\  j  =  ( k  +  1 ) )  ->  ( ( 2  x.  j )  +  1 )  =  ( ( 2  x.  (
k  +  1 ) )  +  1 ) )
182 peano2nn0 11333 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
183174, 176addcld 10059 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
184173, 183mulcld 10060 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 2  x.  ( k  +  1 ) )  e.  CC )
185184, 176addcld 10059 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( 2  x.  ( k  +  1 ) )  +  1 )  e.  CC )
186168, 181, 182, 185fvmptd 6288 . . . . . 6  |-  ( k  e.  NN0  ->  ( G `
 ( k  +  1 ) )  =  ( ( 2  x.  ( k  +  1 ) )  +  1 ) )
187167, 178, 1863brtr4d 4685 . . . . 5  |-  ( k  e.  NN0  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
188187adantl 482 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  <  ( G `  ( k  +  1 ) ) )
189 eldifi 3732 . . . . . . 7  |-  ( n  e.  ( NN  \  ran  G )  ->  n  e.  NN )
190189adantl 482 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  e.  NN )
191 1cnd 10056 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  1  e.  CC )
192191negcld 10379 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  -u 1  e.  CC )
193189, 82syl 17 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  -  1 )  e.  NN0 )
194192, 193expcld 13008 . . . . . . . . 9  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
195194adantl 482 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
19614adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  T  e.  CC )
197190nnnn0d 11351 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  e.  NN0 )
198196, 197expcld 13008 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( T ^ n )  e.  CC )
199190nncnd 11036 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  e.  CC )
200190nnne0d 11065 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  =/=  0 )
201198, 199, 200divcld 10801 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( T ^ n
)  /  n )  e.  CC )
202195, 201mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  e.  CC )
203202, 201addcld 10059 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) )  +  ( ( T ^ n
)  /  n ) )  e.  CC )
204105, 103fvmptg 6280 . . . . . 6  |-  ( ( n  e.  NN  /\  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  +  ( ( T ^
n )  /  n
) )  e.  CC )  ->  ( F `  n )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) )  +  ( ( T ^ n
)  /  n ) ) )
205190, 203, 204syl2anc 693 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( F `  n )  =  ( ( (
-u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
206 eldifn 3733 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  n  e.  ran  G )
207 0nn0 11307 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
208 1nn0 11308 . . . . . . . . . . . . . . . . 17  |-  1  e.  NN0
209148, 208num0h 11509 . . . . . . . . . . . . . . . 16  |-  1  =  ( ( 2  x.  0 )  +  1 )
210 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  0  ->  (
2  x.  j )  =  ( 2  x.  0 ) )
211210oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  0  ->  (
( 2  x.  j
)  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
212211eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( j  =  0  ->  (
1  =  ( ( 2  x.  j )  +  1 )  <->  1  =  ( ( 2  x.  0 )  +  1 ) ) )
213212rspcev 3309 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  NN0  /\  1  =  ( (
2  x.  0 )  +  1 ) )  ->  E. j  e.  NN0  1  =  ( (
2  x.  j )  +  1 ) )
214207, 209, 213mp2an 708 . . . . . . . . . . . . . . 15  |-  E. j  e.  NN0  1  =  ( ( 2  x.  j
)  +  1 )
215 ax-1cn 9994 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
216147elrnmpt 5372 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  CC  ->  (
1  e.  ran  G  <->  E. j  e.  NN0  1  =  ( ( 2  x.  j )  +  1 ) ) )
217215, 216ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ran  G  <->  E. j  e.  NN0  1  =  ( ( 2  x.  j
)  +  1 ) )
218214, 217mpbir 221 . . . . . . . . . . . . . 14  |-  1  e.  ran  G
219218a1i 11 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  1  e.  ran  G )
220 eleq1 2689 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
n  e.  ran  G  <->  1  e.  ran  G ) )
221219, 220mpbird 247 . . . . . . . . . . . 12  |-  ( n  =  1  ->  n  e.  ran  G )
222206, 221nsyl 135 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  n  =  1 )
223 nn1m1nn 11040 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  =  1  \/  ( n  -  1 )  e.  NN ) )
224189, 223syl 17 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  =  1  \/  ( n  -  1 )  e.  NN ) )
225224ord 392 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -.  n  =  1  ->  ( n  -  1 )  e.  NN ) )
226222, 225mpd 15 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  -  1 )  e.  NN )
227 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ j NN
228 nfmpt1 4747 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ j
( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )
229147, 228nfcxfr 2762 . . . . . . . . . . . . . . . . . . 19  |-  F/_ j G
230229nfrn 5368 . . . . . . . . . . . . . . . . . 18  |-  F/_ j ran  G
231227, 230nfdif 3731 . . . . . . . . . . . . . . . . 17  |-  F/_ j
( NN  \  ran  G )
232231nfcri 2758 . . . . . . . . . . . . . . . 16  |-  F/ j  n  e.  ( NN 
\  ran  G )
233147elrnmpt 5372 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  e.  ran  G  <->  E. j  e.  NN0  n  =  ( ( 2  x.  j )  +  1 ) ) )
234206, 233mtbid 314 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  E. j  e.  NN0  n  =  ( ( 2  x.  j )  +  1 ) )
235 ralnex 2992 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. j  e.  NN0  -.  n  =  ( ( 2  x.  j )  +  1 )  <->  -.  E. j  e.  NN0  n  =  ( ( 2  x.  j
)  +  1 ) )
236234, 235sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( NN  \  ran  G )  ->  A. j  e.  NN0  -.  n  =  ( ( 2  x.  j )  +  1 ) )
237236r19.21bi 2932 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  NN0 )  ->  -.  n  =  ( ( 2  x.  j )  +  1 ) )
238237neqned 2801 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  NN0 )  ->  n  =/=  (
( 2  x.  j
)  +  1 ) )
239238necomd 2849 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  =/=  n
)
240239adantlr 751 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  j  e.  NN0 )  ->  (
( 2  x.  j
)  +  1 )  =/=  n )
241 simplr 792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  j  e.  ZZ )
242 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  -.  j  e.  NN0 )
243189ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  n  e.  NN )
244156a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  2  e.  RR )
245 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  e.  ZZ )
246245zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  e.  RR )
247244, 246remulcld 10070 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  x.  j )  e.  RR )
248 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  0  e.  RR )
249 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  1  e.  RR )
250 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  2  e.  CC )
251246recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  e.  CC )
252250, 251mulcomd 10061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  x.  j )  =  ( j  x.  2 ) )
253 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  j  e.  NN0 )
254 elnn0z 11390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( j  e.  NN0  <->  ( j  e.  ZZ  /\  0  <_ 
j ) )
255253, 254sylnib 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  ( j  e.  ZZ  /\  0  <_ 
j ) )
256 nan 604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  ->  -.  ( j  e.  ZZ  /\  0  <_ 
j ) )  <->  ( (
( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  j  e.  ZZ )  ->  -.  0  <_  j ) )
257255, 256mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  j  e.  ZZ )  ->  -.  0  <_  j )
258257anabss1 855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  0  <_  j )
259246, 248ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( j  <  0  <->  -.  0  <_  j ) )
260258, 259mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  <  0
)
261163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  2  e.  RR+ )
262261rpregt0d 11878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  e.  RR  /\  0  <  2 ) )
263 mulltgt0 39181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( j  e.  RR  /\  j  <  0 )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( j  x.  2 )  <  0 )
264246, 260, 262, 263syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( j  x.  2 )  <  0
)
265252, 264eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  x.  j )  <  0
)
266247, 248, 249, 265ltadd1dd 10638 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  <  (
0  +  1 ) )
267 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  1  e.  CC )
268267addid2d 10237 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 0  +  1 )  =  1 )
269266, 268breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  <  1
)
270247, 249readdcld 10069 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  e.  RR )
271270, 249ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( ( 2  x.  j )  +  1 )  <  1  <->  -.  1  <_  ( ( 2  x.  j
)  +  1 ) ) )
272269, 271mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  1  <_  ( ( 2  x.  j
)  +  1 ) )
273 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 2  x.  j
)  +  1 )  e.  NN  ->  1  <_  ( ( 2  x.  j )  +  1 ) )
274272, 273nsyl 135 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  ( (
2  x.  j )  +  1 )  e.  NN )
275274adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  n  e.  NN )  ->  -.  ( (
2  x.  j )  +  1 )  e.  NN )
276 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  e.  NN  /\  ( ( 2  x.  j )  +  1 )  =  n )  ->  ( ( 2  x.  j )  +  1 )  =  n )
277 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  e.  NN  /\  ( ( 2  x.  j )  +  1 )  =  n )  ->  n  e.  NN )
278276, 277eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  e.  NN  /\  ( ( 2  x.  j )  +  1 )  =  n )  ->  ( ( 2  x.  j )  +  1 )  e.  NN )
279278adantll 750 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  /\  n  e.  NN )  /\  (
( 2  x.  j
)  +  1 )  =  n )  -> 
( ( 2  x.  j )  +  1 )  e.  NN )
280275, 279mtand 691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  n  e.  NN )  ->  -.  ( (
2  x.  j )  +  1 )  =  n )
281280neqned 2801 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  n  e.  NN )  ->  ( ( 2  x.  j )  +  1 )  =/=  n
)
282241, 242, 243, 281syl21anc 1325 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  (
( 2  x.  j
)  +  1 )  =/=  n )
283240, 282pm2.61dan 832 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  ZZ )  ->  ( ( 2  x.  j )  +  1 )  =/=  n
)
284283neneqd 2799 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  ZZ )  ->  -.  ( (
2  x.  j )  +  1 )  =  n )
285284ex 450 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( NN  \  ran  G )  ->  (
j  e.  ZZ  ->  -.  ( ( 2  x.  j )  +  1 )  =  n ) )
286232, 285ralrimi 2957 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( NN  \  ran  G )  ->  A. j  e.  ZZ  -.  ( ( 2  x.  j )  +  1 )  =  n )
287 ralnex 2992 . . . . . . . . . . . . . . 15  |-  ( A. j  e.  ZZ  -.  ( ( 2  x.  j )  +  1 )  =  n  <->  -.  E. j  e.  ZZ  ( ( 2  x.  j )  +  1 )  =  n )
288286, 287sylib 208 . . . . . . . . . . . . . 14  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  E. j  e.  ZZ  (
( 2  x.  j
)  +  1 )  =  n )
289189nnzd 11481 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( NN  \  ran  G )  ->  n  e.  ZZ )
290 odd2np1 15065 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  ( -.  2  ||  n  <->  E. j  e.  ZZ  ( ( 2  x.  j )  +  1 )  =  n ) )
291289, 290syl 17 . . . . . . . . . . . . . 14  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -.  2  ||  n  <->  E. j  e.  ZZ  ( ( 2  x.  j )  +  1 )  =  n ) )
292288, 291mtbird 315 . . . . . . . . . . . . 13  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  -.  2  ||  n )
293292notnotrd 128 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  2  ||  n )
294189nncnd 11036 . . . . . . . . . . . . 13  |-  ( n  e.  ( NN  \  ran  G )  ->  n  e.  CC )
295294, 191npcand 10396 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  (
( n  -  1 )  +  1 )  =  n )
296293, 295breqtrrd 4681 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  2  ||  ( ( n  - 
1 )  +  1 ) )
297193nn0zd 11480 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  -  1 )  e.  ZZ )
298 oddp1even 15068 . . . . . . . . . . . 12  |-  ( ( n  -  1 )  e.  ZZ  ->  ( -.  2  ||  ( n  -  1 )  <->  2  ||  ( ( n  - 
1 )  +  1 ) ) )
299297, 298syl 17 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -.  2  ||  ( n  -  1 )  <->  2  ||  ( ( n  - 
1 )  +  1 ) ) )
300296, 299mpbird 247 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  2  ||  ( n  - 
1 ) )
301 oexpneg 15069 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( n  -  1
)  e.  NN  /\  -.  2  ||  ( n  -  1 ) )  ->  ( -u 1 ^ ( n  - 
1 ) )  = 
-u ( 1 ^ ( n  -  1 ) ) )
302191, 226, 300, 301syl3anc 1326 . . . . . . . . 9  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u ( 1 ^ ( n  -  1 ) ) )
303 1exp 12889 . . . . . . . . . . 11  |-  ( ( n  -  1 )  e.  ZZ  ->  (
1 ^ ( n  -  1 ) )  =  1 )
304297, 303syl 17 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  (
1 ^ ( n  -  1 ) )  =  1 )
305304negeqd 10275 . . . . . . . . 9  |-  ( n  e.  ( NN  \  ran  G )  ->  -u (
1 ^ ( n  -  1 ) )  =  -u 1 )
306302, 305eqtrd 2656 . . . . . . . 8  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u 1 )
307306adantl 482 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u 1 )
308307oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  =  ( -u 1  x.  ( ( T ^
n )  /  n
) ) )
309308oveq1d 6665 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) )  +  ( ( T ^ n
)  /  n ) )  =  ( (
-u 1  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
310201mulm1d 10482 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u 1  x.  ( ( T ^ n )  /  n ) )  =  -u ( ( T ^ n )  /  n ) )
311310oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  =  ( -u (
( T ^ n
)  /  n )  +  ( ( T ^ n )  /  n ) ) )
312201negcld 10379 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  -u (
( T ^ n
)  /  n )  e.  CC )
313312, 201addcomd 10238 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u ( ( T ^
n )  /  n
)  +  ( ( T ^ n )  /  n ) )  =  ( ( ( T ^ n )  /  n )  + 
-u ( ( T ^ n )  /  n ) ) )
314201negidd 10382 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( ( T ^
n )  /  n
)  +  -u (
( T ^ n
)  /  n ) )  =  0 )
315311, 313, 3143eqtrd 2660 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  =  0 )
316205, 309, 3153eqtrd 2660 . . . 4  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( F `  n )  =  0 )
317117, 116eqeltrd 2701 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  CC )
318103a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) ) )
319 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
j  =  ( ( 2  x.  k )  +  1 ) )
320319oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( j  -  1 )  =  ( ( ( 2  x.  k
)  +  1 )  -  1 ) )
321320oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( -u 1 ^ (
j  -  1 ) )  =  ( -u
1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) ) )
322319oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( T ^ j
)  =  ( T ^ ( ( 2  x.  k )  +  1 ) ) )
323322, 319oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( T ^
j )  /  j
)  =  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )
324321, 323oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) )  =  ( ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  -  1 ) )  x.  (
( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
325324, 323oveq12d 6668 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) )  =  ( ( ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  x.  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
326148a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  NN0 )
327 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
328326, 327nn0mulcld 11356 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e. 
NN0 )
329 nn0p1nn 11332 . . . . . . . 8  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
330328, 329syl 17 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e.  NN )
331176negcld 10379 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  -u 1  e.  CC )
332175, 176pncand 10393 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  -  1 )  =  ( 2  x.  k
) )
333148a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  2  e. 
NN0 )
334333, 172nn0mulcld 11356 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e. 
NN0 )
335332, 334eqeltrd 2701 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  -  1 )  e. 
NN0 )
336331, 335expcld 13008 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  e.  CC )
337336adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  e.  CC )
33814adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  T  e.  CC )
339208a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  e.  NN0 )
340328, 339nn0addcld 11355 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e. 
NN0 )
341338, 340expcld 13008 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( T ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
342 2cnd 11093 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  CC )
343174adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  CC )
344342, 343mulcld 10060 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e.  CC )
345 1cnd 10056 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  e.  CC )
346344, 345addcld 10059 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e.  CC )
347 0red 10041 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  RR )
348156a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  RR )
349158adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  RR )
350348, 349remulcld 10070 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e.  RR )
351 1red 10055 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  e.  RR )
352 0le2 11111 . . . . . . . . . . . . . 14  |-  0  <_  2
353352a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  2 )
354327nn0ge0d 11354 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  k )
355348, 349, 353, 354mulge0d 10604 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  ( 2  x.  k ) )
356 0lt1 10550 . . . . . . . . . . . . 13  |-  0  <  1
357356a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <  1 )
358350, 351, 355, 357addgegt0d 10601 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <  ( ( 2  x.  k
)  +  1 ) )
359347, 358gtned 10172 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  =/=  0 )
360341, 346, 359divcld 10801 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  e.  CC )
361337, 360mulcld 10060 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  e.  CC )
362361, 360addcld 10059 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( -u 1 ^ (
( ( 2  x.  k )  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  +  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  e.  CC )
363318, 325, 330, 362fvmptd 6288 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( ( 2  x.  k )  +  1 ) )  =  ( ( ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  x.  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
364332adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( 2  x.  k
)  +  1 )  -  1 )  =  ( 2  x.  k
) )
365364oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  =  ( -u 1 ^ ( 2  x.  k
) ) )
366 nn0z 11400 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
367 m1expeven 12907 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  k ) )  =  1 )
368366, 367syl 17 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  1 )
369368adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( 2  x.  k ) )  =  1 )
370365, 369eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  =  1 )
371370oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( 1  x.  (
( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
372360mulid2d 10058 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )
373371, 372eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )
374373oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( -u 1 ^ (
( ( 2  x.  k )  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  +  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
3753602timesd 11275 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
376341, 346, 359divrec2d 10805 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  k )  +  1 ) ) ) )
377376oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
378374, 375, 3773eqtr2d 2662 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( -u 1 ^ (
( ( 2  x.  k )  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  +  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
379363, 378eqtr2d 2657 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) )  =  ( F `  (
( 2  x.  k
)  +  1 ) ) )
380 stirlinglem5.4 . . . . . . 7  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
381380a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) ) ) )
382 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
j  =  k )
383382oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( 2  x.  j
)  =  ( 2  x.  k ) )
384383oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( ( 2  x.  j )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
385384oveq2d 6666 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( 1  /  (
( 2  x.  j
)  +  1 ) )  =  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )
386384oveq2d 6666 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( T ^ (
( 2  x.  j
)  +  1 ) )  =  ( T ^ ( ( 2  x.  k )  +  1 ) ) )
387385, 386oveq12d 6668 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) )
388387oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
389346, 359reccld 10794 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ( 2  x.  k )  +  1 ) )  e.  CC )
390389, 341mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^
( ( 2  x.  k )  +  1 ) ) )  e.  CC )
391342, 390mulcld 10060 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) )  e.  CC )
392381, 388, 327, 391fvmptd 6288 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^
( ( 2  x.  k )  +  1 ) ) ) ) )
393208a1i 11 . . . . . . . . 9  |-  ( k  e.  NN0  ->  1  e. 
NN0 )
394334, 393nn0addcld 11355 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
395168, 171, 172, 394fvmptd 6288 . . . . . . 7  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( ( 2  x.  k )  +  1 ) )
396395adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  ( ( 2  x.  k
)  +  1 ) )
397396fveq2d 6195 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( G `  k
) )  =  ( F `  ( ( 2  x.  k )  +  1 ) ) )
398379, 392, 3973eqtr4d 2666 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( F `  ( G `
 k ) ) )
399145, 1, 146, 2, 155, 188, 316, 317, 398isercoll2 14399 . . 3  |-  ( ph  ->  (  seq 0 (  +  ,  H )  ~~>  ( ( log `  (
1  +  T ) )  -  ( log `  ( 1  -  T
) ) )  <->  seq 1
(  +  ,  F
)  ~~>  ( ( log `  ( 1  +  T
) )  -  ( log `  ( 1  -  T ) ) ) ) )
400144, 399mpbird 247 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( ( log `  ( 1  +  T ) )  -  ( log `  (
1  -  T ) ) ) )
40151, 13resubcld 10458 . . . 4  |-  ( ph  ->  ( 1  -  T
)  e.  RR )
40214subidd 10380 . . . . . 6  |-  ( ph  ->  ( T  -  T
)  =  0 )
403402eqcomd 2628 . . . . 5  |-  ( ph  ->  0  =  ( T  -  T ) )
40413, 51, 13, 139ltsub1dd 10639 . . . . 5  |-  ( ph  ->  ( T  -  T
)  <  ( 1  -  T ) )
405403, 404eqbrtrd 4675 . . . 4  |-  ( ph  ->  0  <  ( 1  -  T ) )
406401, 405elrpd 11869 . . 3  |-  ( ph  ->  ( 1  -  T
)  e.  RR+ )
407133, 406relogdivd 24372 . 2  |-  ( ph  ->  ( log `  (
( 1  +  T
)  /  ( 1  -  T ) ) )  =  ( ( log `  ( 1  +  T ) )  -  ( log `  (
1  -  T ) ) ) )
408400, 407breqtrrd 4681 1  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( 1  +  T )  /  (
1  -  T ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215    || cdvds 14983   *Metcxmt 19731   ballcbl 19733   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303
This theorem is referenced by:  stirlinglem6  40296
  Copyright terms: Public domain W3C validator