Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgere Structured version   Visualization version   Unicode version

Theorem supxrgere 39549
Description: If a real number can be approximated from below by members of a set, then it is smaller or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgere.xph  |-  F/ x ph
supxrgere.a  |-  ( ph  ->  A  C_  RR* )
supxrgere.b  |-  ( ph  ->  B  e.  RR )
supxrgere.y  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  A  ( B  -  x )  <  y
)
Assertion
Ref Expression
supxrgere  |-  ( ph  ->  B  <_  sup ( A ,  RR* ,  <  ) )
Distinct variable groups:    x, A, y    x, B, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem supxrgere
StepHypRef Expression
1 supxrgere.b . . . . 5  |-  ( ph  ->  B  e.  RR )
2 rexr 10085 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
3 pnfxr 10092 . . . . . . 7  |- +oo  e.  RR*
43a1i 11 . . . . . 6  |-  ( B  e.  RR  -> +oo  e.  RR* )
5 ltpnf 11954 . . . . . 6  |-  ( B  e.  RR  ->  B  < +oo )
62, 4, 5xrltled 39486 . . . . 5  |-  ( B  e.  RR  ->  B  <_ +oo )
71, 6syl 17 . . . 4  |-  ( ph  ->  B  <_ +oo )
87adantr 481 . . 3  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  B  <_ +oo )
9 id 22 . . . . 5  |-  ( sup ( A ,  RR* ,  <  )  = +oo  ->  sup ( A ,  RR* ,  <  )  = +oo )
109eqcomd 2628 . . . 4  |-  ( sup ( A ,  RR* ,  <  )  = +oo  -> +oo  =  sup ( A ,  RR* ,  <  ) )
1110adantl 482 . . 3  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  -> +oo  =  sup ( A ,  RR* ,  <  ) )
128, 11breqtrd 4679 . 2  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  B  <_  sup ( A ,  RR* ,  <  ) )
13 simpl 473 . . 3  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  ph )
14 1rp 11836 . . . . . . . 8  |-  1  e.  RR+
15 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
1
16 supxrgere.xph . . . . . . . . . . . 12  |-  F/ x ph
17 nfv 1843 . . . . . . . . . . . 12  |-  F/ x
1  e.  RR+
1816, 17nfan 1828 . . . . . . . . . . 11  |-  F/ x
( ph  /\  1  e.  RR+ )
19 nfv 1843 . . . . . . . . . . 11  |-  F/ x E. y  e.  A  ( B  -  1
)  <  y
2018, 19nfim 1825 . . . . . . . . . 10  |-  F/ x
( ( ph  /\  1  e.  RR+ )  ->  E. y  e.  A  ( B  -  1
)  <  y )
21 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
x  e.  RR+  <->  1  e.  RR+ ) )
2221anbi2d 740 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
( ph  /\  x  e.  RR+ )  <->  ( ph  /\  1  e.  RR+ )
) )
23 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( B  -  x )  =  ( B  - 
1 ) )
2423breq1d 4663 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
( B  -  x
)  <  y  <->  ( B  -  1 )  < 
y ) )
2524rexbidv 3052 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( E. y  e.  A  ( B  -  x
)  <  y  <->  E. y  e.  A  ( B  -  1 )  < 
y ) )
2622, 25imbi12d 334 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( ( ph  /\  x  e.  RR+ )  ->  E. y  e.  A  ( B  -  x
)  <  y )  <->  ( ( ph  /\  1  e.  RR+ )  ->  E. y  e.  A  ( B  -  1 )  < 
y ) ) )
27 supxrgere.y . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  A  ( B  -  x )  <  y
)
2815, 20, 26, 27vtoclgf 3264 . . . . . . . . 9  |-  ( 1  e.  RR+  ->  ( (
ph  /\  1  e.  RR+ )  ->  E. y  e.  A  ( B  -  1 )  < 
y ) )
2914, 28ax-mp 5 . . . . . . . 8  |-  ( (
ph  /\  1  e.  RR+ )  ->  E. y  e.  A  ( B  -  1 )  < 
y )
3014, 29mpan2 707 . . . . . . 7  |-  ( ph  ->  E. y  e.  A  ( B  -  1
)  <  y )
3130adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  E. y  e.  A  ( B  -  1
)  <  y )
32 mnfxr 10096 . . . . . . . . . . 11  |- -oo  e.  RR*
3332a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  ( B  - 
1 )  <  y
)  -> -oo  e.  RR* )
34 supxrgere.a . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  RR* )
3534sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  RR* )
36353adant3 1081 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  ( B  - 
1 )  <  y
)  ->  y  e.  RR* )
37 supxrcl 12145 . . . . . . . . . . . 12  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
3834, 37syl 17 . . . . . . . . . . 11  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  e. 
RR* )
39383ad2ant1 1082 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  ( B  - 
1 )  <  y
)  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
40 peano2rem 10348 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
411, 40syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  1 )  e.  RR )
4241rexrd 10089 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  -  1 )  e.  RR* )
4342adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -. -oo  <  y )  ->  ( B  -  1 )  e. 
RR* )
44433ad2antl1 1223 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  A  /\  ( B  -  1 )  <  y )  /\  -. -oo  <  y )  ->  ( B  -  1 )  e.  RR* )
4536adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  A  /\  ( B  -  1 )  <  y )  /\  -. -oo  <  y )  ->  y  e.  RR* )
4632a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  A  /\  ( B  -  1 )  <  y )  /\  -. -oo  <  y )  -> -oo  e.  RR* )
47 simpl3 1066 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  A  /\  ( B  -  1 )  <  y )  /\  -. -oo  <  y )  ->  ( B  -  1 )  <  y )
48 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  A )  /\  -. -oo 
<  y )  ->  -. -oo  <  y )
4935adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  A )  /\  -. -oo 
<  y )  -> 
y  e.  RR* )
5032a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  A )  /\  -. -oo 
<  y )  -> -oo  e.  RR* )
51 xrlenlt 10103 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\ -oo  e.  RR* )  ->  (
y  <_ -oo  <->  -. -oo  <  y ) )
5249, 50, 51syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  A )  /\  -. -oo 
<  y )  -> 
( y  <_ -oo  <->  -. -oo  <  y ) )
5348, 52mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  A )  /\  -. -oo 
<  y )  -> 
y  <_ -oo )
54533adantl3 1219 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  A  /\  ( B  -  1 )  <  y )  /\  -. -oo  <  y )  ->  y  <_ -oo )
5544, 45, 46, 47, 54xrltletrd 11992 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  A  /\  ( B  -  1 )  <  y )  /\  -. -oo  <  y )  ->  ( B  -  1 )  < -oo )
56 nltmnf 11963 . . . . . . . . . . . . . 14  |-  ( ( B  -  1 )  e.  RR*  ->  -.  ( B  -  1 )  < -oo )
5742, 56syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  ( B  - 
1 )  < -oo )
5857adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  -. -oo  <  y )  ->  -.  ( B  -  1 )  < -oo )
59583ad2antl1 1223 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  A  /\  ( B  -  1 )  <  y )  /\  -. -oo  <  y )  ->  -.  ( B  - 
1 )  < -oo )
6055, 59condan 835 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  ( B  - 
1 )  <  y
)  -> -oo  <  y
)
6134adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  A  C_ 
RR* )
62 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  A )
63 supxrub 12154 . . . . . . . . . . . 12  |-  ( ( A  C_  RR*  /\  y  e.  A )  ->  y  <_  sup ( A ,  RR* ,  <  ) )
6461, 62, 63syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  y  <_  sup ( A ,  RR* ,  <  ) )
65643adant3 1081 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  ( B  - 
1 )  <  y
)  ->  y  <_  sup ( A ,  RR* ,  <  ) )
6633, 36, 39, 60, 65xrltletrd 11992 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A  /\  ( B  - 
1 )  <  y
)  -> -oo  <  sup ( A ,  RR* ,  <  ) )
67663exp 1264 . . . . . . . 8  |-  ( ph  ->  ( y  e.  A  ->  ( ( B  - 
1 )  <  y  -> -oo  <  sup ( A ,  RR* ,  <  ) ) ) )
6867adantr 481 . . . . . . 7  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( y  e.  A  ->  ( ( B  - 
1 )  <  y  -> -oo  <  sup ( A ,  RR* ,  <  ) ) ) )
6968rexlimdv 3030 . . . . . 6  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( E. y  e.  A  ( B  - 
1 )  <  y  -> -oo  <  sup ( A ,  RR* ,  <  ) ) )
7031, 69mpd 15 . . . . 5  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  -> -oo  <  sup ( A ,  RR* ,  <  ) )
71 simpr 477 . . . . . . 7  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  -.  sup ( A ,  RR* ,  <  )  = +oo )
72 nltpnft 11995 . . . . . . . . 9  |-  ( sup ( A ,  RR* ,  <  )  e.  RR*  ->  ( sup ( A ,  RR* ,  <  )  = +oo  <->  -.  sup ( A ,  RR* ,  <  )  < +oo ) )
7338, 72syl 17 . . . . . . . 8  |-  ( ph  ->  ( sup ( A ,  RR* ,  <  )  = +oo  <->  -.  sup ( A ,  RR* ,  <  )  < +oo ) )
7473adantr 481 . . . . . . 7  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( sup ( A ,  RR* ,  <  )  = +oo  <->  -.  sup ( A ,  RR* ,  <  )  < +oo ) )
7571, 74mtbid 314 . . . . . 6  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  -.  -.  sup ( A ,  RR* ,  <  )  < +oo )
7675notnotrd 128 . . . . 5  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  < +oo )
7770, 76jca 554 . . . 4  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( -oo  <  sup ( A ,  RR* ,  <  )  /\  sup ( A ,  RR* ,  <  )  < +oo ) )
7838adantr 481 . . . . 5  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
79 xrrebnd 11999 . . . . 5  |-  ( sup ( A ,  RR* ,  <  )  e.  RR*  ->  ( sup ( A ,  RR* ,  <  )  e.  RR  <->  ( -oo  <  sup ( A ,  RR* ,  <  )  /\  sup ( A ,  RR* ,  <  )  < +oo ) ) )
8078, 79syl 17 . . . 4  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( sup ( A ,  RR* ,  <  )  e.  RR  <->  ( -oo  <  sup ( A ,  RR* ,  <  )  /\  sup ( A ,  RR* ,  <  )  < +oo ) ) )
8177, 80mpbird 247 . . 3  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
82 simpl 473 . . . . 5  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  ( ph  /\ 
sup ( A ,  RR* ,  <  )  e.  RR ) )
83 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  -.  B  <_  sup ( A ,  RR* ,  <  ) )
8482simprd 479 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
851ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  B  e.  RR )
8684, 85ltnled 10184 . . . . . 6  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  ( sup ( A ,  RR* ,  <  )  <  B  <->  -.  B  <_  sup ( A ,  RR* ,  <  ) ) )
8783, 86mpbird 247 . . . . 5  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  sup ( A ,  RR* ,  <  )  <  B )
88 simpll 790 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  ph )
891adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  ->  B  e.  RR )
90 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
9189, 90resubcld 10458 . . . . . . . . 9  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  -> 
( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR )
9291adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR )
93 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  sup ( A ,  RR* ,  <  )  <  B )
9490adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  sup ( A ,  RR* ,  <  )  e.  RR )
9588, 1syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  B  e.  RR )
9694, 95posdifd 10614 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  ( sup ( A ,  RR* ,  <  )  <  B  <->  0  <  ( B  -  sup ( A ,  RR* ,  <  ) ) ) )
9793, 96mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  0  <  ( B  -  sup ( A ,  RR* ,  <  ) ) )
9892, 97elrpd 11869 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )
99 ovex 6678 . . . . . . . 8  |-  ( B  -  sup ( A ,  RR* ,  <  )
)  e.  _V
100 nfcv 2764 . . . . . . . . 9  |-  F/_ x
( B  -  sup ( A ,  RR* ,  <  ) )
101 nfv 1843 . . . . . . . . . . 11  |-  F/ x
( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+
10216, 101nfan 1828 . . . . . . . . . 10  |-  F/ x
( ph  /\  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )
103 nfv 1843 . . . . . . . . . 10  |-  F/ x E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y
104102, 103nfim 1825 . . . . . . . . 9  |-  F/ x
( ( ph  /\  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )  ->  E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y
)
105 eleq1 2689 . . . . . . . . . . 11  |-  ( x  =  ( B  -  sup ( A ,  RR* ,  <  ) )  -> 
( x  e.  RR+  <->  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )
)
106105anbi2d 740 . . . . . . . . . 10  |-  ( x  =  ( B  -  sup ( A ,  RR* ,  <  ) )  -> 
( ( ph  /\  x  e.  RR+ )  <->  ( ph  /\  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )
) )
107 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  ( B  -  sup ( A ,  RR* ,  <  ) )  -> 
( B  -  x
)  =  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) ) )
108107breq1d 4663 . . . . . . . . . . 11  |-  ( x  =  ( B  -  sup ( A ,  RR* ,  <  ) )  -> 
( ( B  -  x )  <  y  <->  ( B  -  ( B  -  sup ( A ,  RR* ,  <  )
) )  <  y
) )
109108rexbidv 3052 . . . . . . . . . 10  |-  ( x  =  ( B  -  sup ( A ,  RR* ,  <  ) )  -> 
( E. y  e.  A  ( B  -  x )  <  y  <->  E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  )
) )  <  y
) )
110106, 109imbi12d 334 . . . . . . . . 9  |-  ( x  =  ( B  -  sup ( A ,  RR* ,  <  ) )  -> 
( ( ( ph  /\  x  e.  RR+ )  ->  E. y  e.  A  ( B  -  x
)  <  y )  <->  ( ( ph  /\  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )  ->  E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y
) ) )
111100, 104, 110, 27vtoclgf 3264 . . . . . . . 8  |-  ( ( B  -  sup ( A ,  RR* ,  <  ) )  e.  _V  ->  ( ( ph  /\  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )  ->  E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y
) )
11299, 111ax-mp 5 . . . . . . 7  |-  ( (
ph  /\  ( B  -  sup ( A ,  RR* ,  <  ) )  e.  RR+ )  ->  E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )
11388, 98, 112syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )
1141recnd 10068 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
115114ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B )  /\  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )  ->  B  e.  CC )
11690recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  ->  sup ( A ,  RR* ,  <  )  e.  CC )
117116ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B )  /\  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )  ->  sup ( A ,  RR* ,  <  )  e.  CC )
118115, 117nncand 10397 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B )  /\  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )  ->  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  =  sup ( A ,  RR* ,  <  ) )
119118eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B )  /\  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )  ->  sup ( A ,  RR* ,  <  )  =  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) ) )
120 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B )  /\  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )  ->  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y
)
121119, 120eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B )  /\  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y )  ->  sup ( A ,  RR* ,  <  )  < 
y )
122121ex 450 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  ( ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y  ->  sup ( A ,  RR* ,  <  )  <  y
) )
123122adantr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B )  /\  y  e.  A )  ->  (
( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y  ->  sup ( A ,  RR* ,  <  )  < 
y ) )
124123reximdva 3017 . . . . . 6  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  ( E. y  e.  A  ( B  -  ( B  -  sup ( A ,  RR* ,  <  ) ) )  <  y  ->  E. y  e.  A  sup ( A ,  RR* ,  <  )  <  y
) )
125113, 124mpd 15 . . . . 5  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  sup ( A ,  RR* ,  <  )  <  B
)  ->  E. y  e.  A  sup ( A ,  RR* ,  <  )  <  y )
12682, 87, 125syl2anc 693 . . . 4  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  E. y  e.  A  sup ( A ,  RR* ,  <  )  <  y )
12761, 37syl 17 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
12835, 127xrlenltd 10104 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  (
y  <_  sup ( A ,  RR* ,  <  )  <->  -.  sup ( A ,  RR* ,  <  )  < 
y ) )
12964, 128mpbid 222 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  -.  sup ( A ,  RR* ,  <  )  <  y
)
130129ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. y  e.  A  -.  sup ( A ,  RR* ,  <  )  < 
y )
131 ralnex 2992 . . . . . 6  |-  ( A. y  e.  A  -.  sup ( A ,  RR* ,  <  )  <  y  <->  -. 
E. y  e.  A  sup ( A ,  RR* ,  <  )  <  y
)
132130, 131sylib 208 . . . . 5  |-  ( ph  ->  -.  E. y  e.  A  sup ( A ,  RR* ,  <  )  <  y )
133132ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  -.  B  <_  sup ( A ,  RR* ,  <  ) )  ->  -.  E. y  e.  A  sup ( A ,  RR* ,  <  )  <  y )
134126, 133condan 835 . . 3  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  ->  B  <_  sup ( A ,  RR* ,  <  ) )
13513, 81, 134syl2anc 693 . 2  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  B  <_  sup ( A ,  RR* ,  <  ) )
13612, 135pm2.61dan 832 1  |-  ( ph  ->  B  <_  sup ( A ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-rp 11833
This theorem is referenced by:  suplesup  39555
  Copyright terms: Public domain W3C validator