Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinv0lt Structured version   Visualization version   Unicode version

Theorem ogrpinv0lt 29723
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpinvlt.0  |-  B  =  ( Base `  G
)
ogrpinvlt.1  |-  .<  =  ( lt `  G )
ogrpinvlt.2  |-  I  =  ( invg `  G )
ogrpinv0lt.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
ogrpinv0lt  |-  ( ( G  e. oGrp  /\  X  e.  B )  ->  (  .0.  .<  X  <->  ( I `  X )  .<  .0.  )
)

Proof of Theorem ogrpinv0lt
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  G  e. oGrp )
2 ogrpgrp 29703 . . . . . 6  |-  ( G  e. oGrp  ->  G  e.  Grp )
31, 2syl 17 . . . . 5  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  G  e.  Grp )
4 ogrpinvlt.0 . . . . . 6  |-  B  =  ( Base `  G
)
5 ogrpinv0lt.3 . . . . . 6  |-  .0.  =  ( 0g `  G )
64, 5grpidcl 17450 . . . . 5  |-  ( G  e.  Grp  ->  .0.  e.  B )
73, 6syl 17 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  .0.  e.  B )
8 simplr 792 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  X  e.  B )
9 ogrpinvlt.2 . . . . . 6  |-  I  =  ( invg `  G )
104, 9grpinvcl 17467 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
113, 8, 10syl2anc 693 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  ( I `  X
)  e.  B )
12 simpr 477 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  .0.  .<  X )
13 ogrpinvlt.1 . . . . 5  |-  .<  =  ( lt `  G )
14 eqid 2622 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
154, 13, 14ogrpaddlt 29718 . . . 4  |-  ( ( G  e. oGrp  /\  (  .0.  e.  B  /\  X  e.  B  /\  (
I `  X )  e.  B )  /\  .0.  .<  X )  ->  (  .0.  ( +g  `  G
) ( I `  X ) )  .< 
( X ( +g  `  G ) ( I `
 X ) ) )
161, 7, 8, 11, 12, 15syl131anc 1339 . . 3  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  (  .0.  ( +g  `  G ) ( I `
 X ) ) 
.<  ( X ( +g  `  G ) ( I `
 X ) ) )
174, 14, 5grplid 17452 . . . 4  |-  ( ( G  e.  Grp  /\  ( I `  X
)  e.  B )  ->  (  .0.  ( +g  `  G ) ( I `  X ) )  =  ( I `
 X ) )
183, 11, 17syl2anc 693 . . 3  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  (  .0.  ( +g  `  G ) ( I `
 X ) )  =  ( I `  X ) )
194, 14, 5, 9grprinv 17469 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X ( +g  `  G ) ( I `
 X ) )  =  .0.  )
203, 8, 19syl2anc 693 . . 3  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  ( X ( +g  `  G ) ( I `
 X ) )  =  .0.  )
2116, 18, 203brtr3d 4684 . 2  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  ( I `  X
)  .<  .0.  )
22 simpll 790 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  G  e. oGrp )
2322, 2syl 17 . . . . 5  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  G  e.  Grp )
24 simplr 792 . . . . 5  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  X  e.  B )
2523, 24, 10syl2anc 693 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  ( I `  X )  e.  B )
2622, 2, 63syl 18 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  .0. 
e.  B )
27 simpr 477 . . . 4  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  ( I `  X ) 
.<  .0.  )
284, 13, 14ogrpaddlt 29718 . . . 4  |-  ( ( G  e. oGrp  /\  (
( I `  X
)  e.  B  /\  .0.  e.  B  /\  X  e.  B )  /\  (
I `  X )  .<  .0.  )  ->  (
( I `  X
) ( +g  `  G
) X )  .< 
(  .0.  ( +g  `  G ) X ) )
2922, 25, 26, 24, 27, 28syl131anc 1339 . . 3  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  ( ( I `  X
) ( +g  `  G
) X )  .< 
(  .0.  ( +g  `  G ) X ) )
304, 14, 5, 9grplinv 17468 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( I `  X ) ( +g  `  G ) X )  =  .0.  )
3123, 24, 30syl2anc 693 . . 3  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  ( ( I `  X
) ( +g  `  G
) X )  =  .0.  )
324, 14, 5grplid 17452 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  ( +g  `  G ) X )  =  X )
3323, 24, 32syl2anc 693 . . 3  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  (  .0.  ( +g  `  G
) X )  =  X )
3429, 31, 333brtr3d 4684 . 2  |-  ( ( ( G  e. oGrp  /\  X  e.  B )  /\  ( I `  X
)  .<  .0.  )  ->  .0. 
.<  X )
3521, 34impbida 877 1  |-  ( ( G  e. oGrp  /\  X  e.  B )  ->  (  .0.  .<  X  <->  ( I `  X )  .<  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   ltcplt 16941   Grpcgrp 17422   invgcminusg 17423  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-omnd 29699  df-ogrp 29700
This theorem is referenced by:  archirngz  29743
  Copyright terms: Public domain W3C validator