Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinvlt Structured version   Visualization version   Unicode version

Theorem ogrpinvlt 29724
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpinvlt.0  |-  B  =  ( Base `  G
)
ogrpinvlt.1  |-  .<  =  ( lt `  G )
ogrpinvlt.2  |-  I  =  ( invg `  G )
Assertion
Ref Expression
ogrpinvlt  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( X  .<  Y  <->  ( I `  Y )  .<  (
I `  X )
) )

Proof of Theorem ogrpinvlt
StepHypRef Expression
1 simp1l 1085 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  G  e. oGrp )
2 simp2 1062 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  X  e.  B )
3 simp3 1063 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  Y  e.  B )
4 ogrpgrp 29703 . . . . . 6  |-  ( G  e. oGrp  ->  G  e.  Grp )
51, 4syl 17 . . . . 5  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  G  e.  Grp )
6 ogrpinvlt.0 . . . . . 6  |-  B  =  ( Base `  G
)
7 ogrpinvlt.2 . . . . . 6  |-  I  =  ( invg `  G )
86, 7grpinvcl 17467 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( I `  Y
)  e.  B )
95, 3, 8syl2anc 693 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( I `  Y )  e.  B
)
10 ogrpinvlt.1 . . . . 5  |-  .<  =  ( lt `  G )
11 eqid 2622 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
126, 10, 11ogrpaddltbi 29719 . . . 4  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  ( I `  Y
)  e.  B ) )  ->  ( X  .<  Y  <->  ( X ( +g  `  G ) ( I `  Y
) )  .<  ( Y ( +g  `  G
) ( I `  Y ) ) ) )
131, 2, 3, 9, 12syl13anc 1328 . . 3  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( X  .<  Y  <->  ( X ( +g  `  G ) ( I `  Y
) )  .<  ( Y ( +g  `  G
) ( I `  Y ) ) ) )
14 eqid 2622 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
156, 11, 14, 7grprinv 17469 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y ( +g  `  G ) ( I `
 Y ) )  =  ( 0g `  G ) )
165, 3, 15syl2anc 693 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( Y
( +g  `  G ) ( I `  Y
) )  =  ( 0g `  G ) )
1716breq2d 4665 . . 3  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( ( X ( +g  `  G
) ( I `  Y ) )  .< 
( Y ( +g  `  G ) ( I `
 Y ) )  <-> 
( X ( +g  `  G ) ( I `
 Y ) ) 
.<  ( 0g `  G
) ) )
18 simp1r 1086 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  (oppg
`  G )  e. oGrp
)
196, 11grpcl 17430 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( I `  Y
)  e.  B )  ->  ( X ( +g  `  G ) ( I `  Y
) )  e.  B
)
205, 2, 9, 19syl3anc 1326 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( X
( +g  `  G ) ( I `  Y
) )  e.  B
)
216, 14grpidcl 17450 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
221, 4, 213syl 18 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( 0g `  G )  e.  B
)
236, 7grpinvcl 17467 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
245, 2, 23syl2anc 693 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( I `  X )  e.  B
)
256, 10, 11, 1, 18, 20, 22, 24ogrpaddltrbid 29721 . . 3  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( ( X ( +g  `  G
) ( I `  Y ) )  .< 
( 0g `  G
)  <->  ( ( I `
 X ) ( +g  `  G ) ( X ( +g  `  G ) ( I `
 Y ) ) )  .<  ( (
I `  X )
( +g  `  G ) ( 0g `  G
) ) ) )
2613, 17, 253bitrd 294 . 2  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( X  .<  Y  <->  ( ( I `
 X ) ( +g  `  G ) ( X ( +g  `  G ) ( I `
 Y ) ) )  .<  ( (
I `  X )
( +g  `  G ) ( 0g `  G
) ) ) )
276, 11, 14, 7grplinv 17468 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( I `  X ) ( +g  `  G ) X )  =  ( 0g `  G ) )
285, 2, 27syl2anc 693 . . . . 5  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
I `  X )
( +g  `  G ) X )  =  ( 0g `  G ) )
2928oveq1d 6665 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
( I `  X
) ( +g  `  G
) X ) ( +g  `  G ) ( I `  Y
) )  =  ( ( 0g `  G
) ( +g  `  G
) ( I `  Y ) ) )
306, 11grpass 17431 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( I `  X )  e.  B  /\  X  e.  B  /\  ( I `  Y
)  e.  B ) )  ->  ( (
( I `  X
) ( +g  `  G
) X ) ( +g  `  G ) ( I `  Y
) )  =  ( ( I `  X
) ( +g  `  G
) ( X ( +g  `  G ) ( I `  Y
) ) ) )
315, 24, 2, 9, 30syl13anc 1328 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
( I `  X
) ( +g  `  G
) X ) ( +g  `  G ) ( I `  Y
) )  =  ( ( I `  X
) ( +g  `  G
) ( X ( +g  `  G ) ( I `  Y
) ) ) )
326, 11, 14grplid 17452 . . . . 5  |-  ( ( G  e.  Grp  /\  ( I `  Y
)  e.  B )  ->  ( ( 0g
`  G ) ( +g  `  G ) ( I `  Y
) )  =  ( I `  Y ) )
335, 9, 32syl2anc 693 . . . 4  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( I `  Y
) )  =  ( I `  Y ) )
3429, 31, 333eqtr3d 2664 . . 3  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
I `  X )
( +g  `  G ) ( X ( +g  `  G ) ( I `
 Y ) ) )  =  ( I `
 Y ) )
356, 11, 14grprid 17453 . . . 4  |-  ( ( G  e.  Grp  /\  ( I `  X
)  e.  B )  ->  ( ( I `
 X ) ( +g  `  G ) ( 0g `  G
) )  =  ( I `  X ) )
365, 24, 35syl2anc 693 . . 3  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
I `  X )
( +g  `  G ) ( 0g `  G
) )  =  ( I `  X ) )
3734, 36breq12d 4666 . 2  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( (
( I `  X
) ( +g  `  G
) ( X ( +g  `  G ) ( I `  Y
) ) )  .< 
( ( I `  X ) ( +g  `  G ) ( 0g
`  G ) )  <-> 
( I `  Y
)  .<  ( I `  X ) ) )
3826, 37bitrd 268 1  |-  ( ( ( G  e. oGrp  /\  (oppg `  G )  e. oGrp )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( X  .<  Y  <->  ( I `  Y )  .<  (
I `  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   ltcplt 16941   Grpcgrp 17422   invgcminusg 17423  oppgcoppg 17775  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-ple 15961  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-oppg 17776  df-omnd 29699  df-ogrp 29700
This theorem is referenced by:  archirngz  29743  archiabllem2c  29749
  Copyright terms: Public domain W3C validator