Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh3N Structured version   Visualization version   Unicode version

Theorem omlfh3N 34546
Description: Foulis-Holland Theorem, part 3. Dual of omlfh1N 34545. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b  |-  B  =  ( Base `  K
)
omlfh1.j  |-  .\/  =  ( join `  K )
omlfh1.m  |-  ./\  =  ( meet `  K )
omlfh1.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
omlfh3N  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( X 
.\/  Y )  ./\  ( X  .\/  Z ) ) )

Proof of Theorem omlfh3N
StepHypRef Expression
1 omlfh1.b . . . . . . 7  |-  B  =  ( Base `  K
)
2 eqid 2622 . . . . . . 7  |-  ( oc
`  K )  =  ( oc `  K
)
3 omlfh1.c . . . . . . 7  |-  C  =  ( cm `  K
)
41, 2, 3cmt4N 34539 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( ( oc `  K ) `  X
) C ( ( oc `  K ) `
 Y ) ) )
543adant3r3 1276 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  <->  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Y )
) )
61, 2, 3cmt4N 34539 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Z  e.  B )  ->  ( X C Z  <-> 
( ( oc `  K ) `  X
) C ( ( oc `  K ) `
 Z ) ) )
763adant3r2 1275 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Z  <->  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) )
85, 7anbi12d 747 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X C Y  /\  X C Z )  <->  ( ( ( oc `  K ) `
 X ) C ( ( oc `  K ) `  Y
)  /\  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) ) )
9 simpl 473 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OML )
10 omlop 34528 . . . . . . . 8  |-  ( K  e.  OML  ->  K  e.  OP )
1110adantr 481 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OP )
12 simpr1 1067 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
131, 2opoccl 34481 . . . . . . 7  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
1411, 12, 13syl2anc 693 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  X )  e.  B )
15 simpr2 1068 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
161, 2opoccl 34481 . . . . . . 7  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
1711, 15, 16syl2anc 693 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Y )  e.  B )
18 simpr3 1069 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
191, 2opoccl 34481 . . . . . . 7  |-  ( ( K  e.  OP  /\  Z  e.  B )  ->  ( ( oc `  K ) `  Z
)  e.  B )
2011, 18, 19syl2anc 693 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Z )  e.  B )
2114, 17, 203jca 1242 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B ) )
22 omlfh1.j . . . . . . . 8  |-  .\/  =  ( join `  K )
23 omlfh1.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
241, 22, 23, 3omlfh1N 34545 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( ( ( oc
`  K ) `  X )  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  /\  ( ( ( oc `  K ) `
 X ) C ( ( oc `  K ) `  Y
)  /\  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) )  ->  (
( ( oc `  K ) `  X
)  ./\  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) )  =  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) )
2524fveq2d 6195 . . . . . 6  |-  ( ( K  e.  OML  /\  ( ( ( oc
`  K ) `  X )  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  /\  ( ( ( oc `  K ) `
 X ) C ( ( oc `  K ) `  Y
)  /\  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  .\/  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
26253exp 1264 . . . . 5  |-  ( K  e.  OML  ->  (
( ( ( oc
`  K ) `  X )  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( ( oc `  K
) `  X ) C ( ( oc
`  K ) `  Y )  /\  (
( oc `  K
) `  X ) C ( ( oc
`  K ) `  Z ) )  -> 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( oc
`  K ) `  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) ) ) )
279, 21, 26sylc 65 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( oc
`  K ) `  X ) C ( ( oc `  K
) `  Y )  /\  ( ( oc `  K ) `  X
) C ( ( oc `  K ) `
 Z ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( oc `  K ) `
 ( ( ( ( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) ) )
288, 27sylbid 230 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X C Y  /\  X C Z )  ->  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( oc `  K ) `
 ( ( ( ( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) ) )
29283impia 1261 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( oc
`  K ) `  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) )
30 omlol 34527 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  OL )
3130adantr 481 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OL )
32 omllat 34529 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  Lat )
3332adantr 481 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
341, 22latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  Z
) )  e.  B
)
3533, 17, 20, 34syl3anc 1326 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) )  e.  B )
361, 22, 23, 2oldmm2 34505 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
)  e.  B )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( X 
.\/  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) ) )
3731, 12, 35, 36syl3anc 1326 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( X  .\/  (
( oc `  K
) `  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
381, 22, 23, 2oldmj4 34511 . . . . . 6  |-  ( ( K  e.  OL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) )  =  ( Y  ./\  Z ) )
3931, 15, 18, 38syl3anc 1326 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) )  =  ( Y  ./\  Z
) )
4039oveq2d 6666 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( X  .\/  ( Y  ./\  Z ) ) )
4137, 40eqtr2d 2657 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( Y  ./\  Z ) )  =  ( ( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) ) )
42413adant3 1081 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )
431, 23latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  e.  B
)
4433, 14, 17, 43syl3anc 1326 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) )  e.  B )
451, 23latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Z
) )  e.  B
)
4633, 14, 20, 45syl3anc 1326 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) )  e.  B )
471, 22, 23, 2oldmj1 34508 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  e.  B  /\  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Z )
)  e.  B )  ->  ( ( oc
`  K ) `  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( ( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) ) )  ./\  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) )
4831, 44, 46, 47syl3anc 1326 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) )  .\/  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
) )  ./\  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
491, 22, 23, 2oldmm4 34507 . . . . . 6  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) ) )  =  ( X  .\/  Y ) )
5031, 12, 15, 49syl3anc 1326 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) ) )  =  ( X  .\/  Y
) )
511, 22, 23, 2oldmm4 34507 . . . . . 6  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) )  =  ( X  .\/  Z ) )
5231, 12, 18, 51syl3anc 1326 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) )  =  ( X  .\/  Z
) )
5350, 52oveq12d 6668 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) ) ) 
./\  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( ( X  .\/  Y )  ./\  ( X  .\/  Z ) ) )
5448, 53eqtr2d 2657 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  ./\  ( X  .\/  Z ) )  =  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  .\/  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
55543adant3 1081 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  .\/  Y )  ./\  ( X  .\/  Z ) )  =  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  .\/  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
5629, 42, 553eqtr4d 2666 1  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( X 
.\/  Y )  ./\  ( X  .\/  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   occoc 15949   joincjn 16944   meetcmee 16945   Latclat 17045   OPcops 34459   cmccmtN 34460   OLcol 34461   OMLcoml 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-oposet 34463  df-cmtN 34464  df-ol 34465  df-oml 34466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator