Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlmod1i2N Structured version   Visualization version   Unicode version

Theorem omlmod1i2N 34547
Description: Analogue of modular law atmod1i2 35145 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlmod.b  |-  B  =  ( Base `  K
)
omlmod.l  |-  .<_  =  ( le `  K )
omlmod.j  |-  .\/  =  ( join `  K )
omlmod.m  |-  ./\  =  ( meet `  K )
omlmod.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
omlmod1i2N  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( X 
.\/  Y )  ./\  Z ) )

Proof of Theorem omlmod1i2N
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  K  e.  OML )
2 simp23 1096 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  Z  e.  B )
3 simp21 1094 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  X  e.  B )
4 simp22 1095 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  Y  e.  B )
5 simp3l 1089 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  X  .<_  Z )
6 omlmod.b . . . . . . 7  |-  B  =  ( Base `  K
)
7 omlmod.l . . . . . . 7  |-  .<_  =  ( le `  K )
8 omlmod.c . . . . . . 7  |-  C  =  ( cm `  K
)
96, 7, 8lecmtN 34543 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<_  Z  ->  X C Z ) )
101, 3, 2, 9syl3anc 1326 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( X  .<_  Z  ->  X C Z ) )
115, 10mpd 15 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  X C Z )
126, 8cmtcomN 34536 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Z  e.  B )  ->  ( X C Z  <-> 
Z C X ) )
131, 3, 2, 12syl3anc 1326 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( X C Z  <-> 
Z C X ) )
1411, 13mpbid 222 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  Z C X )
15 simp3r 1090 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  Y C Z )
166, 8cmtcomN 34536 . . . . 5  |-  ( ( K  e.  OML  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y C Z  <-> 
Z C Y ) )
171, 4, 2, 16syl3anc 1326 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( Y C Z  <-> 
Z C Y ) )
1815, 17mpbid 222 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  Z C Y )
19 omlmod.j . . . 4  |-  .\/  =  ( join `  K )
20 omlmod.m . . . 4  |-  ./\  =  ( meet `  K )
216, 19, 20, 8omlfh1N 34545 . . 3  |-  ( ( K  e.  OML  /\  ( Z  e.  B  /\  X  e.  B  /\  Y  e.  B
)  /\  ( Z C X  /\  Z C Y ) )  -> 
( Z  ./\  ( X  .\/  Y ) )  =  ( ( Z 
./\  X )  .\/  ( Z  ./\  Y ) ) )
221, 2, 3, 4, 14, 18, 21syl132anc 1344 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( Z  ./\  ( X  .\/  Y ) )  =  ( ( Z 
./\  X )  .\/  ( Z  ./\  Y ) ) )
23 omllat 34529 . . . 4  |-  ( K  e.  OML  ->  K  e.  Lat )
24233ad2ant1 1082 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  ->  K  e.  Lat )
256, 19latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
2624, 3, 4, 25syl3anc 1326 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( X  .\/  Y
)  e.  B )
276, 20latmcom 17075 . . 3  |-  ( ( K  e.  Lat  /\  Z  e.  B  /\  ( X  .\/  Y )  e.  B )  -> 
( Z  ./\  ( X  .\/  Y ) )  =  ( ( X 
.\/  Y )  ./\  Z ) )
2824, 2, 26, 27syl3anc 1326 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( Z  ./\  ( X  .\/  Y ) )  =  ( ( X 
.\/  Y )  ./\  Z ) )
296, 7, 20latleeqm2 17080 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<_  Z  <->  ( Z  ./\ 
X )  =  X ) )
3024, 3, 2, 29syl3anc 1326 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( X  .<_  Z  <->  ( Z  ./\ 
X )  =  X ) )
315, 30mpbid 222 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( Z  ./\  X
)  =  X )
326, 20latmcom 17075 . . . 4  |-  ( ( K  e.  Lat  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  ./\  Y
)  =  ( Y 
./\  Z ) )
3324, 2, 4, 32syl3anc 1326 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( Z  ./\  Y
)  =  ( Y 
./\  Z ) )
3431, 33oveq12d 6668 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( ( Z  ./\  X )  .\/  ( Z 
./\  Y ) )  =  ( X  .\/  ( Y  ./\  Z ) ) )
3522, 28, 343eqtr3rd 2665 1  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  Y C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( X 
.\/  Y )  ./\  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   cmccmtN 34460   OMLcoml 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-oposet 34463  df-cmtN 34464  df-ol 34465  df-oml 34466
This theorem is referenced by:  omlspjN  34548
  Copyright terms: Public domain W3C validator