| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlmod1i2N | Structured version Visualization version Unicode version | ||
| Description: Analogue of modular law atmod1i2 35145 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omlmod.b |
|
| omlmod.l |
|
| omlmod.j |
|
| omlmod.m |
|
| omlmod.c |
|
| Ref | Expression |
|---|---|
| omlmod1i2N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . 3
| |
| 2 | simp23 1096 |
. . 3
| |
| 3 | simp21 1094 |
. . 3
| |
| 4 | simp22 1095 |
. . 3
| |
| 5 | simp3l 1089 |
. . . . 5
| |
| 6 | omlmod.b |
. . . . . . 7
| |
| 7 | omlmod.l |
. . . . . . 7
| |
| 8 | omlmod.c |
. . . . . . 7
| |
| 9 | 6, 7, 8 | lecmtN 34543 |
. . . . . 6
|
| 10 | 1, 3, 2, 9 | syl3anc 1326 |
. . . . 5
|
| 11 | 5, 10 | mpd 15 |
. . . 4
|
| 12 | 6, 8 | cmtcomN 34536 |
. . . . 5
|
| 13 | 1, 3, 2, 12 | syl3anc 1326 |
. . . 4
|
| 14 | 11, 13 | mpbid 222 |
. . 3
|
| 15 | simp3r 1090 |
. . . 4
| |
| 16 | 6, 8 | cmtcomN 34536 |
. . . . 5
|
| 17 | 1, 4, 2, 16 | syl3anc 1326 |
. . . 4
|
| 18 | 15, 17 | mpbid 222 |
. . 3
|
| 19 | omlmod.j |
. . . 4
| |
| 20 | omlmod.m |
. . . 4
| |
| 21 | 6, 19, 20, 8 | omlfh1N 34545 |
. . 3
|
| 22 | 1, 2, 3, 4, 14, 18, 21 | syl132anc 1344 |
. 2
|
| 23 | omllat 34529 |
. . . 4
| |
| 24 | 23 | 3ad2ant1 1082 |
. . 3
|
| 25 | 6, 19 | latjcl 17051 |
. . . 4
|
| 26 | 24, 3, 4, 25 | syl3anc 1326 |
. . 3
|
| 27 | 6, 20 | latmcom 17075 |
. . 3
|
| 28 | 24, 2, 26, 27 | syl3anc 1326 |
. 2
|
| 29 | 6, 7, 20 | latleeqm2 17080 |
. . . . 5
|
| 30 | 24, 3, 2, 29 | syl3anc 1326 |
. . . 4
|
| 31 | 5, 30 | mpbid 222 |
. . 3
|
| 32 | 6, 20 | latmcom 17075 |
. . . 4
|
| 33 | 24, 2, 4, 32 | syl3anc 1326 |
. . 3
|
| 34 | 31, 33 | oveq12d 6668 |
. 2
|
| 35 | 22, 28, 34 | 3eqtr3rd 2665 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-oposet 34463 df-cmtN 34464 df-ol 34465 df-oml 34466 |
| This theorem is referenced by: omlspjN 34548 |
| Copyright terms: Public domain | W3C validator |