Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lecmtN Structured version   Visualization version   Unicode version

Theorem lecmtN 34543
Description: Ordered elements commute. (lecmi 28461 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
lecmt.b  |-  B  =  ( Base `  K
)
lecmt.l  |-  .<_  =  ( le `  K )
lecmt.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
lecmtN  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  X C Y ) )

Proof of Theorem lecmtN
StepHypRef Expression
1 omllat 34529 . . . . 5  |-  ( K  e.  OML  ->  K  e.  Lat )
213ad2ant1 1082 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
3 simp2 1062 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
4 omlop 34528 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  OP )
543ad2ant1 1082 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
6 lecmt.b . . . . . . 7  |-  B  =  ( Base `  K
)
7 eqid 2622 . . . . . . 7  |-  ( oc
`  K )  =  ( oc `  K
)
86, 7opoccl 34481 . . . . . 6  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
95, 3, 8syl2anc 693 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
10 simp3 1063 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
11 eqid 2622 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
126, 11latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B )
132, 9, 10, 12syl3anc 1326 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B )
14 lecmt.l . . . . 5  |-  .<_  =  ( le `  K )
15 eqid 2622 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
166, 14, 15latmle1 17076 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B )  -> 
( X ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  .<_  X )
172, 3, 13, 16syl3anc 1326 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  .<_  X )
186, 15latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B )  -> 
( X ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  e.  B )
192, 3, 13, 18syl3anc 1326 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  e.  B )
206, 14lattr 17056 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( X (
meet `  K )
( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) )  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( X ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  .<_  X  /\  X  .<_  Y )  ->  ( X (
meet `  K )
( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) )  .<_  Y )
)
212, 19, 3, 10, 20syl13anc 1328 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( X ( meet `  K
) ( ( ( oc `  K ) `
 X ) (
join `  K ) Y ) )  .<_  X  /\  X  .<_  Y )  ->  ( X (
meet `  K )
( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) )  .<_  Y )
)
2217, 21mpand 711 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( X ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  .<_  Y ) )
23 lecmt.c . . 3  |-  C  =  ( cm `  K
)
246, 14, 11, 15, 7, 23cmtbr4N 34542 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  .<_  Y ) )
2522, 24sylibrd 249 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  X C Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   occoc 15949   joincjn 16944   meetcmee 16945   Latclat 17045   OPcops 34459   cmccmtN 34460   OMLcoml 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-oposet 34463  df-cmtN 34464  df-ol 34465  df-oml 34466
This theorem is referenced by:  cmtidN  34544  omlmod1i2N  34547
  Copyright terms: Public domain W3C validator