MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminex Structured version   Visualization version   Unicode version

Theorem onminex 7007
Description: If a wff is true for an ordinal number, there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
onminex.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
onminex  |-  ( E. x  e.  On  ph  ->  E. x  e.  On  ( ph  /\  A. y  e.  x  -.  ps )
)
Distinct variable groups:    x, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem onminex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . 4  |-  { x  e.  On  |  ph }  C_  On
2 rabn0 3958 . . . . 5  |-  ( { x  e.  On  |  ph }  =/=  (/)  <->  E. x  e.  On  ph )
32biimpri 218 . . . 4  |-  ( E. x  e.  On  ph  ->  { x  e.  On  |  ph }  =/=  (/) )
4 oninton 7000 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
{ x  e.  On  |  ph }  =/=  (/) )  ->  |^| { x  e.  On  |  ph }  e.  On )
51, 3, 4sylancr 695 . . 3  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
6 onminesb 6998 . . 3  |-  ( E. x  e.  On  ph  ->  [. |^| { x  e.  On  |  ph }  /  x ]. ph )
7 onss 6990 . . . . . . 7  |-  ( |^| { x  e.  On  |  ph }  e.  On  ->  |^|
{ x  e.  On  |  ph }  C_  On )
85, 7syl 17 . . . . . 6  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  C_  On )
98sseld 3602 . . . . 5  |-  ( E. x  e.  On  ph  ->  ( y  e.  |^| { x  e.  On  |  ph }  ->  y  e.  On ) )
10 onminex.1 . . . . . 6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1110onnminsb 7004 . . . . 5  |-  ( y  e.  On  ->  (
y  e.  |^| { x  e.  On  |  ph }  ->  -.  ps ) )
129, 11syli 39 . . . 4  |-  ( E. x  e.  On  ph  ->  ( y  e.  |^| { x  e.  On  |  ph }  ->  -.  ps )
)
1312ralrimiv 2965 . . 3  |-  ( E. x  e.  On  ph  ->  A. y  e.  |^| { x  e.  On  |  ph }  -.  ps )
14 dfsbcq2 3438 . . . . 5  |-  ( z  =  |^| { x  e.  On  |  ph }  ->  ( [ z  /  x ] ph  <->  [. |^| { x  e.  On  |  ph }  /  x ]. ph )
)
15 raleq 3138 . . . . 5  |-  ( z  =  |^| { x  e.  On  |  ph }  ->  ( A. y  e.  z  -.  ps  <->  A. y  e.  |^| { x  e.  On  |  ph }  -.  ps ) )
1614, 15anbi12d 747 . . . 4  |-  ( z  =  |^| { x  e.  On  |  ph }  ->  ( ( [ z  /  x ] ph  /\ 
A. y  e.  z  -.  ps )  <->  ( [. |^| { x  e.  On  |  ph }  /  x ]. ph  /\  A. y  e.  |^| { x  e.  On  |  ph }  -.  ps ) ) )
1716rspcev 3309 . . 3  |-  ( (
|^| { x  e.  On  |  ph }  e.  On  /\  ( [. |^| { x  e.  On  |  ph }  /  x ]. ph  /\  A. y  e.  |^| { x  e.  On  |  ph }  -.  ps ) )  ->  E. z  e.  On  ( [ z  /  x ] ph  /\  A. y  e.  z  -.  ps )
)
185, 6, 13, 17syl12anc 1324 . 2  |-  ( E. x  e.  On  ph  ->  E. z  e.  On  ( [ z  /  x ] ph  /\  A. y  e.  z  -.  ps )
)
19 nfv 1843 . . 3  |-  F/ z ( ph  /\  A. y  e.  x  -.  ps )
20 nfs1v 2437 . . . 4  |-  F/ x [ z  /  x ] ph
21 nfv 1843 . . . 4  |-  F/ x A. y  e.  z  -.  ps
2220, 21nfan 1828 . . 3  |-  F/ x
( [ z  /  x ] ph  /\  A. y  e.  z  -.  ps )
23 sbequ12 2111 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
24 raleq 3138 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  x  -.  ps  <->  A. y  e.  z  -.  ps ) )
2523, 24anbi12d 747 . . 3  |-  ( x  =  z  ->  (
( ph  /\  A. y  e.  x  -.  ps )  <->  ( [ z  /  x ] ph  /\  A. y  e.  z  -.  ps )
) )
2619, 22, 25cbvrex 3168 . 2  |-  ( E. x  e.  On  ( ph  /\  A. y  e.  x  -.  ps )  <->  E. z  e.  On  ( [ z  /  x ] ph  /\  A. y  e.  z  -.  ps )
)
2718, 26sylibr 224 1  |-  ( E. x  e.  On  ph  ->  E. x  e.  On  ( ph  /\  A. y  e.  x  -.  ps )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   [wsb 1880    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   [.wsbc 3435    C_ wss 3574   (/)c0 3915   |^|cint 4475   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  tz7.49  7540  omeulem1  7662  zorn2lem7  9324
  Copyright terms: Public domain W3C validator