MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onovuni Structured version   Visualization version   Unicode version

Theorem onovuni 7439
Description: A variant of onfununi 7438 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
onovuni.1  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
onovuni.2  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
Assertion
Ref Expression
onovuni  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( A F U. S )  =  U_ x  e.  S  ( A F x ) )
Distinct variable groups:    x, y, A    x, F, y    x, S, y    x, T
Allowed substitution hint:    T( y)

Proof of Theorem onovuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 onovuni.1 . . . 4  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
2 vex 3203 . . . . 5  |-  y  e. 
_V
3 oveq2 6658 . . . . . 6  |-  ( z  =  y  ->  ( A F z )  =  ( A F y ) )
4 eqid 2622 . . . . . 6  |-  ( z  e.  _V  |->  ( A F z ) )  =  ( z  e. 
_V  |->  ( A F z ) )
5 ovex 6678 . . . . . 6  |-  ( A F y )  e. 
_V
63, 4, 5fvmpt 6282 . . . . 5  |-  ( y  e.  _V  ->  (
( z  e.  _V  |->  ( A F z ) ) `  y )  =  ( A F y ) )
72, 6ax-mp 5 . . . 4  |-  ( ( z  e.  _V  |->  ( A F z ) ) `  y )  =  ( A F y )
8 vex 3203 . . . . . . 7  |-  x  e. 
_V
9 oveq2 6658 . . . . . . . 8  |-  ( z  =  x  ->  ( A F z )  =  ( A F x ) )
10 ovex 6678 . . . . . . . 8  |-  ( A F x )  e. 
_V
119, 4, 10fvmpt 6282 . . . . . . 7  |-  ( x  e.  _V  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x ) )
128, 11ax-mp 5 . . . . . 6  |-  ( ( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x )
1312a1i 11 . . . . 5  |-  ( x  e.  y  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x ) )
1413iuneq2i 4539 . . . 4  |-  U_ x  e.  y  ( (
z  e.  _V  |->  ( A F z ) ) `  x )  =  U_ x  e.  y  ( A F x )
151, 7, 143eqtr4g 2681 . . 3  |-  ( Lim  y  ->  ( (
z  e.  _V  |->  ( A F z ) ) `  y )  =  U_ x  e.  y  ( ( z  e.  _V  |->  ( A F z ) ) `
 x ) )
16 onovuni.2 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
1716, 12, 73sstr4g 3646 . . 3  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x ) 
C_  ( ( z  e.  _V  |->  ( A F z ) ) `
 y ) )
1815, 17onfununi 7438 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  U_ x  e.  S  ( (
z  e.  _V  |->  ( A F z ) ) `  x ) )
19 uniexg 6955 . . . 4  |-  ( S  e.  T  ->  U. S  e.  _V )
20 oveq2 6658 . . . . 5  |-  ( z  =  U. S  -> 
( A F z )  =  ( A F U. S ) )
21 ovex 6678 . . . . 5  |-  ( A F U. S )  e.  _V
2220, 4, 21fvmpt 6282 . . . 4  |-  ( U. S  e.  _V  ->  ( ( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  ( A F U. S ) )
2319, 22syl 17 . . 3  |-  ( S  e.  T  ->  (
( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  ( A F U. S ) )
24233ad2ant1 1082 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  ( A F U. S ) )
2512a1i 11 . . . 4  |-  ( x  e.  S  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x ) )
2625iuneq2i 4539 . . 3  |-  U_ x  e.  S  ( (
z  e.  _V  |->  ( A F z ) ) `  x )  =  U_ x  e.  S  ( A F x )
2726a1i 11 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  S  ( (
z  e.  _V  |->  ( A F z ) ) `  x )  =  U_ x  e.  S  ( A F x ) )
2818, 24, 273eqtr3d 2664 1  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( A F U. S )  =  U_ x  e.  S  ( A F x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   Oncon0 5723   Lim wlim 5724   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-lim 5728  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  onoviun  7440
  Copyright terms: Public domain W3C validator