| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onovuni | Structured version Visualization version Unicode version | ||
| Description: A variant of onfununi 7438 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| onovuni.1 |
|
| onovuni.2 |
|
| Ref | Expression |
|---|---|
| onovuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onovuni.1 |
. . . 4
| |
| 2 | vex 3203 |
. . . . 5
| |
| 3 | oveq2 6658 |
. . . . . 6
| |
| 4 | eqid 2622 |
. . . . . 6
| |
| 5 | ovex 6678 |
. . . . . 6
| |
| 6 | 3, 4, 5 | fvmpt 6282 |
. . . . 5
|
| 7 | 2, 6 | ax-mp 5 |
. . . 4
|
| 8 | vex 3203 |
. . . . . . 7
| |
| 9 | oveq2 6658 |
. . . . . . . 8
| |
| 10 | ovex 6678 |
. . . . . . . 8
| |
| 11 | 9, 4, 10 | fvmpt 6282 |
. . . . . . 7
|
| 12 | 8, 11 | ax-mp 5 |
. . . . . 6
|
| 13 | 12 | a1i 11 |
. . . . 5
|
| 14 | 13 | iuneq2i 4539 |
. . . 4
|
| 15 | 1, 7, 14 | 3eqtr4g 2681 |
. . 3
|
| 16 | onovuni.2 |
. . . 4
| |
| 17 | 16, 12, 7 | 3sstr4g 3646 |
. . 3
|
| 18 | 15, 17 | onfununi 7438 |
. 2
|
| 19 | uniexg 6955 |
. . . 4
| |
| 20 | oveq2 6658 |
. . . . 5
| |
| 21 | ovex 6678 |
. . . . 5
| |
| 22 | 20, 4, 21 | fvmpt 6282 |
. . . 4
|
| 23 | 19, 22 | syl 17 |
. . 3
|
| 24 | 23 | 3ad2ant1 1082 |
. 2
|
| 25 | 12 | a1i 11 |
. . . 4
|
| 26 | 25 | iuneq2i 4539 |
. . 3
|
| 27 | 26 | a1i 11 |
. 2
|
| 28 | 18, 24, 27 | 3eqtr3d 2664 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-ord 5726 df-on 5727 df-lim 5728 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: onoviun 7440 |
| Copyright terms: Public domain | W3C validator |