MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onoviun Structured version   Visualization version   Unicode version

Theorem onoviun 7440
Description: A variant of onovuni 7439 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
onovuni.1  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
onovuni.2  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
Assertion
Ref Expression
onoviun  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U_ z  e.  K  L )  = 
U_ z  e.  K  ( A F L ) )
Distinct variable groups:    x, y,
z, A    x, F, y, z    x, K, y, z    x, L, y
Allowed substitution hints:    T( x, y, z)    L( z)

Proof of Theorem onoviun
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfiun3g 5378 . . . 4  |-  ( A. z  e.  K  L  e.  On  ->  U_ z  e.  K  L  =  U. ran  ( z  e.  K  |->  L ) )
213ad2ant2 1083 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  U_ z  e.  K  L  =  U. ran  ( z  e.  K  |->  L ) )
32oveq2d 6666 . 2  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U_ z  e.  K  L )  =  ( A F U. ran  ( z  e.  K  |->  L ) ) )
4 simp1 1061 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  K  e.  T )
5 mptexg 6484 . . . 4  |-  ( K  e.  T  ->  (
z  e.  K  |->  L )  e.  _V )
6 rnexg 7098 . . . 4  |-  ( ( z  e.  K  |->  L )  e.  _V  ->  ran  ( z  e.  K  |->  L )  e.  _V )
74, 5, 63syl 18 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ran  (
z  e.  K  |->  L )  e.  _V )
8 simp2 1062 . . . . 5  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  A. z  e.  K  L  e.  On )
9 eqid 2622 . . . . . 6  |-  ( z  e.  K  |->  L )  =  ( z  e.  K  |->  L )
109fmpt 6381 . . . . 5  |-  ( A. z  e.  K  L  e.  On  <->  ( z  e.  K  |->  L ) : K --> On )
118, 10sylib 208 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( z  e.  K  |->  L ) : K --> On )
12 frn 6053 . . . 4  |-  ( ( z  e.  K  |->  L ) : K --> On  ->  ran  ( z  e.  K  |->  L )  C_  On )
1311, 12syl 17 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ran  (
z  e.  K  |->  L )  C_  On )
14 dmmptg 5632 . . . . . 6  |-  ( A. z  e.  K  L  e.  On  ->  dom  ( z  e.  K  |->  L )  =  K )
15143ad2ant2 1083 . . . . 5  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  dom  (
z  e.  K  |->  L )  =  K )
16 simp3 1063 . . . . 5  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  K  =/=  (/) )
1715, 16eqnetrd 2861 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  dom  (
z  e.  K  |->  L )  =/=  (/) )
18 dm0rn0 5342 . . . . 5  |-  ( dom  ( z  e.  K  |->  L )  =  (/)  <->  ran  ( z  e.  K  |->  L )  =  (/) )
1918necon3bii 2846 . . . 4  |-  ( dom  ( z  e.  K  |->  L )  =/=  (/)  <->  ran  ( z  e.  K  |->  L )  =/=  (/) )
2017, 19sylib 208 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ran  (
z  e.  K  |->  L )  =/=  (/) )
21 onovuni.1 . . . 4  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
22 onovuni.2 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
2321, 22onovuni 7439 . . 3  |-  ( ( ran  ( z  e.  K  |->  L )  e. 
_V  /\  ran  ( z  e.  K  |->  L ) 
C_  On  /\  ran  (
z  e.  K  |->  L )  =/=  (/) )  -> 
( A F U. ran  ( z  e.  K  |->  L ) )  = 
U_ x  e.  ran  ( z  e.  K  |->  L ) ( A F x ) )
247, 13, 20, 23syl3anc 1326 . 2  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U. ran  (
z  e.  K  |->  L ) )  =  U_ x  e.  ran  ( z  e.  K  |->  L ) ( A F x ) )
25 oveq2 6658 . . . . . . 7  |-  ( x  =  L  ->  ( A F x )  =  ( A F L ) )
2625eleq2d 2687 . . . . . 6  |-  ( x  =  L  ->  (
w  e.  ( A F x )  <->  w  e.  ( A F L ) ) )
279, 26rexrnmpt 6369 . . . . 5  |-  ( A. z  e.  K  L  e.  On  ->  ( E. x  e.  ran  ( z  e.  K  |->  L ) w  e.  ( A F x )  <->  E. z  e.  K  w  e.  ( A F L ) ) )
28273ad2ant2 1083 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( E. x  e.  ran  (
z  e.  K  |->  L ) w  e.  ( A F x )  <->  E. z  e.  K  w  e.  ( A F L ) ) )
29 eliun 4524 . . . 4  |-  ( w  e.  U_ x  e. 
ran  ( z  e.  K  |->  L ) ( A F x )  <->  E. x  e.  ran  ( z  e.  K  |->  L ) w  e.  ( A F x ) )
30 eliun 4524 . . . 4  |-  ( w  e.  U_ z  e.  K  ( A F L )  <->  E. z  e.  K  w  e.  ( A F L ) )
3128, 29, 303bitr4g 303 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( w  e.  U_ x  e. 
ran  ( z  e.  K  |->  L ) ( A F x )  <-> 
w  e.  U_ z  e.  K  ( A F L ) ) )
3231eqrdv 2620 . 2  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  U_ x  e.  ran  ( z  e.  K  |->  L ) ( A F x )  =  U_ z  e.  K  ( A F L ) )
333, 24, 323eqtrd 2660 1  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U_ z  e.  K  L )  = 
U_ z  e.  K  ( A F L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   dom cdm 5114   ran crn 5115   Oncon0 5723   Lim wlim 5724   -->wf 5884  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653
This theorem is referenced by:  oeoalem  7676  oeoelem  7678
  Copyright terms: Public domain W3C validator