| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucconni | Structured version Visualization version Unicode version | ||
| Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| onsucconni.1 |
|
| Ref | Expression |
|---|---|
| onsucconni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucconni.1 |
. . 3
| |
| 2 | onsuctop 32432 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | elin 3796 |
. . . 4
| |
| 5 | elsuci 5791 |
. . . . 5
| |
| 6 | 1 | onunisuci 5841 |
. . . . . . 7
|
| 7 | 6 | eqcomi 2631 |
. . . . . 6
|
| 8 | 7 | cldopn 20835 |
. . . . 5
|
| 9 | 1 | onsuci 7038 |
. . . . . . . . . 10
|
| 10 | 9 | oneli 5835 |
. . . . . . . . 9
|
| 11 | elndif 3734 |
. . . . . . . . . . . 12
| |
| 12 | on0eln0 5780 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | biimprd 238 |
. . . . . . . . . . . . 13
|
| 14 | 13 | necon1bd 2812 |
. . . . . . . . . . . 12
|
| 15 | ssdif0 3942 |
. . . . . . . . . . . . 13
| |
| 16 | 1 | onssneli 5837 |
. . . . . . . . . . . . 13
|
| 17 | 15, 16 | sylbir 225 |
. . . . . . . . . . . 12
|
| 18 | 11, 14, 17 | syl56 36 |
. . . . . . . . . . 11
|
| 19 | 18 | con2d 129 |
. . . . . . . . . 10
|
| 20 | 1 | oneli 5835 |
. . . . . . . . . . . 12
|
| 21 | on0eln0 5780 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | biimprd 238 |
. . . . . . . . . . . 12
|
| 23 | 20, 22 | syl 17 |
. . . . . . . . . . 11
|
| 24 | 23 | necon1bd 2812 |
. . . . . . . . . 10
|
| 25 | 19, 24 | sylcom 30 |
. . . . . . . . 9
|
| 26 | 10, 25 | syl 17 |
. . . . . . . 8
|
| 27 | 26 | orim1d 884 |
. . . . . . 7
|
| 28 | 27 | impcom 446 |
. . . . . 6
|
| 29 | vex 3203 |
. . . . . . 7
| |
| 30 | 29 | elpr 4198 |
. . . . . 6
|
| 31 | 28, 30 | sylibr 224 |
. . . . 5
|
| 32 | 5, 8, 31 | syl2an 494 |
. . . 4
|
| 33 | 4, 32 | sylbi 207 |
. . 3
|
| 34 | 33 | ssriv 3607 |
. 2
|
| 35 | 7 | isconn2 21217 |
. 2
|
| 36 | 3, 34, 35 | mpbir2an 955 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-topgen 16104 df-top 20699 df-bases 20750 df-cld 20823 df-conn 21215 |
| This theorem is referenced by: onsucconn 32437 |
| Copyright terms: Public domain | W3C validator |