| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabex3d | Structured version Visualization version Unicode version | ||
| Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) |
| Ref | Expression |
|---|---|
| opabex3d.1 |
|
| opabex3d.2 |
|
| Ref | Expression |
|---|---|
| opabex3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1918 |
. . . . . 6
| |
| 2 | an12 838 |
. . . . . . 7
| |
| 3 | 2 | exbii 1774 |
. . . . . 6
|
| 4 | elxp 5131 |
. . . . . . . 8
| |
| 5 | excom 2042 |
. . . . . . . . 9
| |
| 6 | an12 838 |
. . . . . . . . . . . . 13
| |
| 7 | velsn 4193 |
. . . . . . . . . . . . . 14
| |
| 8 | 7 | anbi1i 731 |
. . . . . . . . . . . . 13
|
| 9 | 6, 8 | bitri 264 |
. . . . . . . . . . . 12
|
| 10 | 9 | exbii 1774 |
. . . . . . . . . . 11
|
| 11 | vex 3203 |
. . . . . . . . . . . 12
| |
| 12 | opeq1 4402 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eqeq2d 2632 |
. . . . . . . . . . . . 13
|
| 14 | 13 | anbi1d 741 |
. . . . . . . . . . . 12
|
| 15 | 11, 14 | ceqsexv 3242 |
. . . . . . . . . . 11
|
| 16 | 10, 15 | bitri 264 |
. . . . . . . . . 10
|
| 17 | 16 | exbii 1774 |
. . . . . . . . 9
|
| 18 | 5, 17 | bitri 264 |
. . . . . . . 8
|
| 19 | nfv 1843 |
. . . . . . . . . 10
| |
| 20 | nfsab1 2612 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | nfan 1828 |
. . . . . . . . 9
|
| 22 | nfv 1843 |
. . . . . . . . 9
| |
| 23 | opeq2 4403 |
. . . . . . . . . . 11
| |
| 24 | 23 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 25 | sbequ12 2111 |
. . . . . . . . . . . 12
| |
| 26 | 25 | equcoms 1947 |
. . . . . . . . . . 11
|
| 27 | df-clab 2609 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | syl6rbbr 279 |
. . . . . . . . . 10
|
| 29 | 24, 28 | anbi12d 747 |
. . . . . . . . 9
|
| 30 | 21, 22, 29 | cbvex 2272 |
. . . . . . . 8
|
| 31 | 4, 18, 30 | 3bitri 286 |
. . . . . . 7
|
| 32 | 31 | anbi2i 730 |
. . . . . 6
|
| 33 | 1, 3, 32 | 3bitr4ri 293 |
. . . . 5
|
| 34 | 33 | exbii 1774 |
. . . 4
|
| 35 | eliun 4524 |
. . . . 5
| |
| 36 | df-rex 2918 |
. . . . 5
| |
| 37 | 35, 36 | bitri 264 |
. . . 4
|
| 38 | elopab 4983 |
. . . 4
| |
| 39 | 34, 37, 38 | 3bitr4i 292 |
. . 3
|
| 40 | 39 | eqriv 2619 |
. 2
|
| 41 | opabex3d.1 |
. . 3
| |
| 42 | snex 4908 |
. . . . 5
| |
| 43 | opabex3d.2 |
. . . . 5
| |
| 44 | xpexg 6960 |
. . . . 5
| |
| 45 | 42, 43, 44 | sylancr 695 |
. . . 4
|
| 46 | 45 | ralrimiva 2966 |
. . 3
|
| 47 | iunexg 7143 |
. . 3
| |
| 48 | 41, 46, 47 | syl2anc 693 |
. 2
|
| 49 | 40, 48 | syl5eqelr 2706 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: wksfval 26505 fpwrelmap 29508 cnvepresex 34104 opabresex0d 41304 upwlksfval 41716 |
| Copyright terms: Public domain | W3C validator |