| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcom | Structured version Visualization version Unicode version | ||
| Description: Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.) |
| Ref | Expression |
|---|---|
| hpg.p |
|
| hpg.d |
|
| hpg.i |
|
| hpg.o |
|
| opphl.l |
|
| opphl.d |
|
| opphl.g |
|
| oppcom.a |
|
| oppcom.b |
|
| oppcom.o |
|
| Ref | Expression |
|---|---|
| oppcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcom.o |
. . . . . 6
| |
| 2 | hpg.p |
. . . . . . 7
| |
| 3 | hpg.d |
. . . . . . 7
| |
| 4 | hpg.i |
. . . . . . 7
| |
| 5 | hpg.o |
. . . . . . 7
| |
| 6 | oppcom.a |
. . . . . . 7
| |
| 7 | oppcom.b |
. . . . . . 7
| |
| 8 | 2, 3, 4, 5, 6, 7 | islnopp 25631 |
. . . . . 6
|
| 9 | 1, 8 | mpbid 222 |
. . . . 5
|
| 10 | 9 | simpld 475 |
. . . 4
|
| 11 | 10 | simprd 479 |
. . 3
|
| 12 | 10 | simpld 475 |
. . 3
|
| 13 | 9 | simprd 479 |
. . . 4
|
| 14 | opphl.g |
. . . . . . . 8
| |
| 15 | 14 | ad2antrr 762 |
. . . . . . 7
|
| 16 | 6 | ad2antrr 762 |
. . . . . . 7
|
| 17 | opphl.l |
. . . . . . . . 9
| |
| 18 | 14 | adantr 481 |
. . . . . . . . 9
|
| 19 | opphl.d |
. . . . . . . . . 10
| |
| 20 | 19 | adantr 481 |
. . . . . . . . 9
|
| 21 | simpr 477 |
. . . . . . . . 9
| |
| 22 | 2, 17, 4, 18, 20, 21 | tglnpt 25444 |
. . . . . . . 8
|
| 23 | 22 | adantr 481 |
. . . . . . 7
|
| 24 | 7 | ad2antrr 762 |
. . . . . . 7
|
| 25 | simpr 477 |
. . . . . . 7
| |
| 26 | 2, 3, 4, 15, 16, 23, 24, 25 | tgbtwncom 25383 |
. . . . . 6
|
| 27 | 14 | ad2antrr 762 |
. . . . . . 7
|
| 28 | 7 | ad2antrr 762 |
. . . . . . 7
|
| 29 | 22 | adantr 481 |
. . . . . . 7
|
| 30 | 6 | ad2antrr 762 |
. . . . . . 7
|
| 31 | simpr 477 |
. . . . . . 7
| |
| 32 | 2, 3, 4, 27, 28, 29, 30, 31 | tgbtwncom 25383 |
. . . . . 6
|
| 33 | 26, 32 | impbida 877 |
. . . . 5
|
| 34 | 33 | rexbidva 3049 |
. . . 4
|
| 35 | 13, 34 | mpbid 222 |
. . 3
|
| 36 | 11, 12, 35 | jca31 557 |
. 2
|
| 37 | 2, 3, 4, 5, 7, 6 | islnopp 25631 |
. 2
|
| 38 | 36, 37 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-cnv 5122 df-dm 5124 df-rn 5125 df-iota 5851 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: opphllem2 25640 opphllem4 25642 opphllem5 25643 opphllem6 25644 lnperpex 25695 |
| Copyright terms: Public domain | W3C validator |