MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem4 Structured version   Visualization version   Unicode version

Theorem opphllem4 25642
Description: Lemma for opphl 25646. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
hpg.p  |-  P  =  ( Base `  G
)
hpg.d  |-  .-  =  ( dist `  G )
hpg.i  |-  I  =  (Itv `  G )
hpg.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
opphl.l  |-  L  =  (LineG `  G )
opphl.d  |-  ( ph  ->  D  e.  ran  L
)
opphl.g  |-  ( ph  ->  G  e. TarskiG )
opphl.k  |-  K  =  (hlG `  G )
opphllem5.n  |-  N  =  ( (pInvG `  G
) `  M )
opphllem5.a  |-  ( ph  ->  A  e.  P )
opphllem5.c  |-  ( ph  ->  C  e.  P )
opphllem5.r  |-  ( ph  ->  R  e.  D )
opphllem5.s  |-  ( ph  ->  S  e.  D )
opphllem5.m  |-  ( ph  ->  M  e.  P )
opphllem5.o  |-  ( ph  ->  A O C )
opphllem5.p  |-  ( ph  ->  D (⟂G `  G
) ( A L R ) )
opphllem5.q  |-  ( ph  ->  D (⟂G `  G
) ( C L S ) )
opphllem3.t  |-  ( ph  ->  R  =/=  S )
opphllem3.l  |-  ( ph  ->  ( S  .-  C
) (≤G `  G
) ( R  .-  A ) )
opphllem3.u  |-  ( ph  ->  U  e.  P )
opphllem3.v  |-  ( ph  ->  ( N `  R
)  =  S )
opphllem4.u  |-  ( ph  ->  V  e.  P )
opphllem4.1  |-  ( ph  ->  U ( K `  R ) A )
opphllem4.2  |-  ( ph  ->  V ( K `  S ) C )
Assertion
Ref Expression
opphllem4  |-  ( ph  ->  U O V )
Distinct variable groups:    D, a,
b    I, a, b    P, a, b    t, A    t, D    t, R    t, C    t, G    t, L    t, U    t, I    t, K   
t, M    t, O    t, N    t, P    t, S    t, V    ph, t    t,  .-    t, a, b
Allowed substitution hints:    ph( a, b)    A( a, b)    C( a, b)    R( a, b)    S( a, b)    U( a, b)    G( a, b)    K( a, b)    L( a, b)    M( a, b)    .- ( a, b)    N( a, b)    O( a, b)    V( a, b)

Proof of Theorem opphllem4
StepHypRef Expression
1 hpg.p . 2  |-  P  =  ( Base `  G
)
2 hpg.d . 2  |-  .-  =  ( dist `  G )
3 hpg.i . 2  |-  I  =  (Itv `  G )
4 hpg.o . 2  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
5 opphl.l . 2  |-  L  =  (LineG `  G )
6 opphl.d . 2  |-  ( ph  ->  D  e.  ran  L
)
7 opphl.g . 2  |-  ( ph  ->  G  e. TarskiG )
8 opphllem4.u . 2  |-  ( ph  ->  V  e.  P )
9 opphllem3.u . 2  |-  ( ph  ->  U  e.  P )
10 opphllem5.n . . 3  |-  N  =  ( (pInvG `  G
) `  M )
11 eqid 2622 . . . 4  |-  (pInvG `  G )  =  (pInvG `  G )
12 opphllem5.m . . . 4  |-  ( ph  ->  M  e.  P )
131, 2, 3, 5, 11, 7, 12, 10, 9mircl 25556 . . 3  |-  ( ph  ->  ( N `  U
)  e.  P )
14 opphllem5.s . . 3  |-  ( ph  ->  S  e.  D )
15 opphllem5.o . . . . . . . . . . 11  |-  ( ph  ->  A O C )
16 opphllem5.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  P )
17 opphllem5.c . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  P )
181, 2, 3, 4, 16, 17islnopp 25631 . . . . . . . . . . 11  |-  ( ph  ->  ( A O C  <-> 
( ( -.  A  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( A I C ) ) ) )
1915, 18mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( -.  A  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( A I C ) ) )
2019simpld 475 . . . . . . . . 9  |-  ( ph  ->  ( -.  A  e.  D  /\  -.  C  e.  D ) )
2120simpld 475 . . . . . . . 8  |-  ( ph  ->  -.  A  e.  D
)
22 opphllem5.r . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  D )
231, 5, 3, 7, 6, 22tglnpt 25444 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  P )
24 opphl.k . . . . . . . . . . . . 13  |-  K  =  (hlG `  G )
25 opphllem4.1 . . . . . . . . . . . . 13  |-  ( ph  ->  U ( K `  R ) A )
261, 3, 24, 9, 16, 23, 7, 25hlne1 25500 . . . . . . . . . . . 12  |-  ( ph  ->  U  =/=  R )
2726necomd 2849 . . . . . . . . . . 11  |-  ( ph  ->  R  =/=  U )
281, 3, 24, 9, 16, 23, 7, 5, 25hlln 25502 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  ( A L R ) )
291, 3, 24, 9, 16, 23, 7ishlg 25497 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U ( K `
 R ) A  <-> 
( U  =/=  R  /\  A  =/=  R  /\  ( U  e.  ( R I A )  \/  A  e.  ( R I U ) ) ) ) )
3025, 29mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( U  =/=  R  /\  A  =/=  R  /\  ( U  e.  ( R I A )  \/  A  e.  ( R I U ) ) ) )
3130simp2d 1074 . . . . . . . . . . 11  |-  ( ph  ->  A  =/=  R )
321, 3, 5, 7, 23, 9, 16, 27, 28, 31lnrot1 25518 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( R L U ) )
3332adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  U  e.  D )  ->  A  e.  ( R L U ) )
347adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  D )  ->  G  e. TarskiG )
3523adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  D )  ->  R  e.  P )
369adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  D )  ->  U  e.  P )
3727adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  D )  ->  R  =/=  U )
386adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  D )  ->  D  e.  ran  L )
3922adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  D )  ->  R  e.  D )
40 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  D )  ->  U  e.  D )
411, 3, 5, 34, 35, 36, 37, 37, 38, 39, 40tglinethru 25531 . . . . . . . . 9  |-  ( (
ph  /\  U  e.  D )  ->  D  =  ( R L U ) )
4233, 41eleqtrrd 2704 . . . . . . . 8  |-  ( (
ph  /\  U  e.  D )  ->  A  e.  D )
4321, 42mtand 691 . . . . . . 7  |-  ( ph  ->  -.  U  e.  D
)
447adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  G  e. TarskiG )
4512adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  M  e.  P )
469adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  U  e.  P )
471, 2, 3, 5, 11, 44, 45, 10, 46mirmir 25557 . . . . . . . 8  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  ( N `  ( N `  U
) )  =  U )
486adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  D  e.  ran  L )
491, 5, 3, 7, 6, 14tglnpt 25444 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  P )
50 opphllem3.t . . . . . . . . . . . . 13  |-  ( ph  ->  R  =/=  S )
5150necomd 2849 . . . . . . . . . . . 12  |-  ( ph  ->  S  =/=  R )
521, 2, 3, 5, 11, 7, 12, 10, 23mirbtwn 25553 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( ( N `  R ) I R ) )
53 opphllem3.v . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N `  R
)  =  S )
5453oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N `  R ) I R )  =  ( S I R ) )
5552, 54eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( S I R ) )
561, 3, 5, 7, 49, 23, 12, 51, 55btwnlng1 25514 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ( S L R ) )
571, 3, 5, 7, 49, 23, 51, 51, 6, 14, 22tglinethru 25531 . . . . . . . . . . 11  |-  ( ph  ->  D  =  ( S L R ) )
5856, 57eleqtrrd 2704 . . . . . . . . . 10  |-  ( ph  ->  M  e.  D )
5958adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  M  e.  D )
60 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  ( N `  U )  e.  D
)
611, 2, 3, 5, 11, 44, 10, 48, 59, 60mirln 25571 . . . . . . . 8  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  ( N `  ( N `  U
) )  e.  D
)
6247, 61eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  ( N `  U )  e.  D
)  ->  U  e.  D )
6343, 62mtand 691 . . . . . 6  |-  ( ph  ->  -.  ( N `  U )  e.  D
)
6463, 43jca 554 . . . . 5  |-  ( ph  ->  ( -.  ( N `
 U )  e.  D  /\  -.  U  e.  D ) )
651, 2, 3, 5, 11, 7, 12, 10, 9mirbtwn 25553 . . . . . 6  |-  ( ph  ->  M  e.  ( ( N `  U ) I U ) )
66 eleq1 2689 . . . . . . 7  |-  ( t  =  M  ->  (
t  e.  ( ( N `  U ) I U )  <->  M  e.  ( ( N `  U ) I U ) ) )
6766rspcev 3309 . . . . . 6  |-  ( ( M  e.  D  /\  M  e.  ( ( N `  U )
I U ) )  ->  E. t  e.  D  t  e.  ( ( N `  U )
I U ) )
6858, 65, 67syl2anc 693 . . . . 5  |-  ( ph  ->  E. t  e.  D  t  e.  ( ( N `  U )
I U ) )
6964, 68jca 554 . . . 4  |-  ( ph  ->  ( ( -.  ( N `  U )  e.  D  /\  -.  U  e.  D )  /\  E. t  e.  D  t  e.  ( ( N `  U ) I U ) ) )
701, 2, 3, 4, 13, 9islnopp 25631 . . . 4  |-  ( ph  ->  ( ( N `  U ) O U  <-> 
( ( -.  ( N `  U )  e.  D  /\  -.  U  e.  D )  /\  E. t  e.  D  t  e.  ( ( N `  U ) I U ) ) ) )
7169, 70mpbird 247 . . 3  |-  ( ph  ->  ( N `  U
) O U )
72 eqidd 2623 . . 3  |-  ( ph  ->  ( N `  U
)  =  ( N `
 U ) )
73 opphllem5.p . . . . . . . 8  |-  ( ph  ->  D (⟂G `  G
) ( A L R ) )
74 opphllem5.q . . . . . . . 8  |-  ( ph  ->  D (⟂G `  G
) ( C L S ) )
75 opphllem3.l . . . . . . . 8  |-  ( ph  ->  ( S  .-  C
) (≤G `  G
) ( R  .-  A ) )
761, 2, 3, 4, 5, 6, 7, 24, 10, 16, 17, 22, 14, 12, 15, 73, 74, 50, 75, 9, 53opphllem3 25641 . . . . . . 7  |-  ( ph  ->  ( U ( K `
 R ) A  <-> 
( N `  U
) ( K `  S ) C ) )
7725, 76mpbid 222 . . . . . 6  |-  ( ph  ->  ( N `  U
) ( K `  S ) C )
78 opphllem4.2 . . . . . . 7  |-  ( ph  ->  V ( K `  S ) C )
791, 3, 24, 8, 17, 49, 7, 78hlcomd 25499 . . . . . 6  |-  ( ph  ->  C ( K `  S ) V )
801, 3, 24, 13, 17, 8, 7, 49, 77, 79hltr 25505 . . . . 5  |-  ( ph  ->  ( N `  U
) ( K `  S ) V )
811, 3, 24, 13, 8, 49, 7ishlg 25497 . . . . 5  |-  ( ph  ->  ( ( N `  U ) ( K `
 S ) V  <-> 
( ( N `  U )  =/=  S  /\  V  =/=  S  /\  ( ( N `  U )  e.  ( S I V )  \/  V  e.  ( S I ( N `
 U ) ) ) ) ) )
8280, 81mpbid 222 . . . 4  |-  ( ph  ->  ( ( N `  U )  =/=  S  /\  V  =/=  S  /\  ( ( N `  U )  e.  ( S I V )  \/  V  e.  ( S I ( N `
 U ) ) ) ) )
8382simp1d 1073 . . 3  |-  ( ph  ->  ( N `  U
)  =/=  S )
8482simp2d 1074 . . 3  |-  ( ph  ->  V  =/=  S )
8582simp3d 1075 . . 3  |-  ( ph  ->  ( ( N `  U )  e.  ( S I V )  \/  V  e.  ( S I ( N `
 U ) ) ) )
861, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 71, 58, 72, 83, 84, 85opphllem2 25640 . 2  |-  ( ph  ->  V O U )
871, 2, 3, 4, 5, 6, 7, 8, 9, 86oppcom 25636 1  |-  ( ph  ->  U O V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  ≤Gcleg 25477  hlGchlg 25495  pInvGcmir 25547  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  opphllem5  25643
  Copyright terms: Public domain W3C validator