Proof of Theorem opphllem4
Step | Hyp | Ref
| Expression |
1 | | hpg.p |
. 2
     |
2 | | hpg.d |
. 2
     |
3 | | hpg.i |
. 2
Itv   |
4 | | hpg.o |
. 2
   
   
           |
5 | | opphl.l |
. 2
LineG   |
6 | | opphl.d |
. 2
   |
7 | | opphl.g |
. 2

TarskiG |
8 | | opphllem4.u |
. 2
   |
9 | | opphllem3.u |
. 2
   |
10 | | opphllem5.n |
. . 3
 pInvG      |
11 | | eqid 2622 |
. . . 4
pInvG  pInvG   |
12 | | opphllem5.m |
. . . 4
   |
13 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mircl 25556 |
. . 3
       |
14 | | opphllem5.s |
. . 3
   |
15 | | opphllem5.o |
. . . . . . . . . . 11
     |
16 | | opphllem5.a |
. . . . . . . . . . . 12
   |
17 | | opphllem5.c |
. . . . . . . . . . . 12
   |
18 | 1, 2, 3, 4, 16, 17 | islnopp 25631 |
. . . . . . . . . . 11
     
 
        |
19 | 15, 18 | mpbid 222 |
. . . . . . . . . 10
  
 
       |
20 | 19 | simpld 475 |
. . . . . . . . 9
     |
21 | 20 | simpld 475 |
. . . . . . . 8
   |
22 | | opphllem5.r |
. . . . . . . . . . . 12
   |
23 | 1, 5, 3, 7, 6, 22 | tglnpt 25444 |
. . . . . . . . . . 11
   |
24 | | opphl.k |
. . . . . . . . . . . . 13
hlG   |
25 | | opphllem4.1 |
. . . . . . . . . . . . 13
         |
26 | 1, 3, 24, 9, 16, 23, 7, 25 | hlne1 25500 |
. . . . . . . . . . . 12
   |
27 | 26 | necomd 2849 |
. . . . . . . . . . 11
   |
28 | 1, 3, 24, 9, 16, 23, 7, 5, 25 | hlln 25502 |
. . . . . . . . . . 11
       |
29 | 1, 3, 24, 9, 16, 23, 7 | ishlg 25497 |
. . . . . . . . . . . . 13
        
              |
30 | 25, 29 | mpbid 222 |
. . . . . . . . . . . 12
 
             |
31 | 30 | simp2d 1074 |
. . . . . . . . . . 11
   |
32 | 1, 3, 5, 7, 23, 9,
16, 27, 28, 31 | lnrot1 25518 |
. . . . . . . . . 10
       |
33 | 32 | adantr 481 |
. . . . . . . . 9
 
       |
34 | 7 | adantr 481 |
. . . . . . . . . 10
 
 TarskiG |
35 | 23 | adantr 481 |
. . . . . . . . . 10
 
   |
36 | 9 | adantr 481 |
. . . . . . . . . 10
 
   |
37 | 27 | adantr 481 |
. . . . . . . . . 10
 
   |
38 | 6 | adantr 481 |
. . . . . . . . . 10
 
   |
39 | 22 | adantr 481 |
. . . . . . . . . 10
 
   |
40 | | simpr 477 |
. . . . . . . . . 10
 
   |
41 | 1, 3, 5, 34, 35, 36, 37, 37, 38, 39, 40 | tglinethru 25531 |
. . . . . . . . 9
 
       |
42 | 33, 41 | eleqtrrd 2704 |
. . . . . . . 8
 
   |
43 | 21, 42 | mtand 691 |
. . . . . . 7
   |
44 | 7 | adantr 481 |
. . . . . . . . 9
 
    
TarskiG |
45 | 12 | adantr 481 |
. . . . . . . . 9
 
    
  |
46 | 9 | adantr 481 |
. . . . . . . . 9
 
    
  |
47 | 1, 2, 3, 5, 11, 44, 45, 10, 46 | mirmir 25557 |
. . . . . . . 8
 
    
          |
48 | 6 | adantr 481 |
. . . . . . . . 9
 
    
  |
49 | 1, 5, 3, 7, 6, 14 | tglnpt 25444 |
. . . . . . . . . . . 12
   |
50 | | opphllem3.t |
. . . . . . . . . . . . 13
   |
51 | 50 | necomd 2849 |
. . . . . . . . . . . 12
   |
52 | 1, 2, 3, 5, 11, 7,
12, 10, 23 | mirbtwn 25553 |
. . . . . . . . . . . . 13
           |
53 | | opphllem3.v |
. . . . . . . . . . . . . 14
       |
54 | 53 | oveq1d 6665 |
. . . . . . . . . . . . 13
               |
55 | 52, 54 | eleqtrd 2703 |
. . . . . . . . . . . 12
       |
56 | 1, 3, 5, 7, 49, 23, 12, 51, 55 | btwnlng1 25514 |
. . . . . . . . . . 11
       |
57 | 1, 3, 5, 7, 49, 23, 51, 51, 6, 14, 22 | tglinethru 25531 |
. . . . . . . . . . 11
       |
58 | 56, 57 | eleqtrrd 2704 |
. . . . . . . . . 10
   |
59 | 58 | adantr 481 |
. . . . . . . . 9
 
    
  |
60 | | simpr 477 |
. . . . . . . . 9
 
    
      |
61 | 1, 2, 3, 5, 11, 44, 10, 48, 59, 60 | mirln 25571 |
. . . . . . . 8
 
    
          |
62 | 47, 61 | eqeltrrd 2702 |
. . . . . . 7
 
    
  |
63 | 43, 62 | mtand 691 |
. . . . . 6
       |
64 | 63, 43 | jca 554 |
. . . . 5
         |
65 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mirbtwn 25553 |
. . . . . 6
           |
66 | | eleq1 2689 |
. . . . . . 7
         
           |
67 | 66 | rspcev 3309 |
. . . . . 6
 
         
          |
68 | 58, 65, 67 | syl2anc 693 |
. . . . 5
 
          |
69 | 64, 68 | jca 554 |
. . . 4
      
 
           |
70 | 1, 2, 3, 4, 13, 9 | islnopp 25631 |
. . . 4
             
 
            |
71 | 69, 70 | mpbird 247 |
. . 3
         |
72 | | eqidd 2623 |
. . 3
           |
73 | | opphllem5.p |
. . . . . . . 8
  ⟂G         |
74 | | opphllem5.q |
. . . . . . . 8
  ⟂G         |
75 | | opphllem3.l |
. . . . . . . 8
    ≤G       |
76 | 1, 2, 3, 4, 5, 6, 7, 24, 10, 16, 17, 22, 14, 12, 15, 73, 74, 50, 75, 9, 53 | opphllem3 25641 |
. . . . . . 7
                     |
77 | 25, 76 | mpbid 222 |
. . . . . 6
             |
78 | | opphllem4.2 |
. . . . . . 7
         |
79 | 1, 3, 24, 8, 17, 49, 7, 78 | hlcomd 25499 |
. . . . . 6
         |
80 | 1, 3, 24, 13, 17, 8, 7, 49, 77, 79 | hltr 25505 |
. . . . 5
             |
81 | 1, 3, 24, 13, 8, 49, 7 | ishlg 25497 |
. . . . 5
                
                      |
82 | 80, 81 | mpbid 222 |
. . . 4
     
                     |
83 | 82 | simp1d 1073 |
. . 3
       |
84 | 82 | simp2d 1074 |
. . 3
   |
85 | 82 | simp3d 1075 |
. . 3
                     |
86 | 1, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 71, 58, 72, 83, 84, 85 | opphllem2 25640 |
. 2
     |
87 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 86 | oppcom 25636 |
1
     |