MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0eln0 Structured version   Visualization version   Unicode version

Theorem ord0eln0 5779
Description: A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ord0eln0  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )

Proof of Theorem ord0eln0
StepHypRef Expression
1 ne0i 3921 . 2  |-  ( (/)  e.  A  ->  A  =/=  (/) )
2 ord0 5777 . . . 4  |-  Ord  (/)
3 noel 3919 . . . . 5  |-  -.  A  e.  (/)
4 ordtri2 5758 . . . . . 6  |-  ( ( Ord  A  /\  Ord  (/) )  ->  ( A  e.  (/)  <->  -.  ( A  =  (/)  \/  (/)  e.  A
) ) )
54con2bid 344 . . . . 5  |-  ( ( Ord  A  /\  Ord  (/) )  ->  ( ( A  =  (/)  \/  (/)  e.  A
)  <->  -.  A  e.  (/) ) )
63, 5mpbiri 248 . . . 4  |-  ( ( Ord  A  /\  Ord  (/) )  ->  ( A  =  (/)  \/  (/)  e.  A
) )
72, 6mpan2 707 . . 3  |-  ( Ord 
A  ->  ( A  =  (/)  \/  (/)  e.  A
) )
8 neor 2885 . . 3  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  <->  ( A  =/=  (/)  ->  (/)  e.  A ) )
97, 8sylib 208 . 2  |-  ( Ord 
A  ->  ( A  =/=  (/)  ->  (/)  e.  A
) )
101, 9impbid2 216 1  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  on0eln0  5780  dflim2  5781  0ellim  5787  0elsuc  7035  ordge1n0  7578  omwordi  7651  omass  7660  nnmord  7712  nnmwordi  7715  wemapwe  8594  elni2  9699  bnj529  30811
  Copyright terms: Public domain W3C validator