| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnmord | Structured version Visualization version Unicode version | ||
| Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnmord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmordi 7711 |
. . . . . 6
| |
| 2 | 1 | ex 450 |
. . . . 5
|
| 3 | 2 | com23 86 |
. . . 4
|
| 4 | 3 | impd 447 |
. . 3
|
| 5 | 4 | 3adant1 1079 |
. 2
|
| 6 | ne0i 3921 |
. . . . . . . 8
| |
| 7 | nnm0r 7690 |
. . . . . . . . . 10
| |
| 8 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 9 | 8 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 10 | 7, 9 | syl5ibrcom 237 |
. . . . . . . . 9
|
| 11 | 10 | necon3d 2815 |
. . . . . . . 8
|
| 12 | 6, 11 | syl5 34 |
. . . . . . 7
|
| 13 | 12 | adantr 481 |
. . . . . 6
|
| 14 | nnord 7073 |
. . . . . . . 8
| |
| 15 | ord0eln0 5779 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
|
| 17 | 16 | adantl 482 |
. . . . . 6
|
| 18 | 13, 17 | sylibrd 249 |
. . . . 5
|
| 19 | 18 | 3adant1 1079 |
. . . 4
|
| 20 | oveq2 6658 |
. . . . . . . . . 10
| |
| 21 | 20 | a1i 11 |
. . . . . . . . 9
|
| 22 | nnmordi 7711 |
. . . . . . . . . 10
| |
| 23 | 22 | 3adantl2 1218 |
. . . . . . . . 9
|
| 24 | 21, 23 | orim12d 883 |
. . . . . . . 8
|
| 25 | 24 | con3d 148 |
. . . . . . 7
|
| 26 | simpl3 1066 |
. . . . . . . . 9
| |
| 27 | simpl1 1064 |
. . . . . . . . 9
| |
| 28 | nnmcl 7692 |
. . . . . . . . 9
| |
| 29 | 26, 27, 28 | syl2anc 693 |
. . . . . . . 8
|
| 30 | simpl2 1065 |
. . . . . . . . 9
| |
| 31 | nnmcl 7692 |
. . . . . . . . 9
| |
| 32 | 26, 30, 31 | syl2anc 693 |
. . . . . . . 8
|
| 33 | nnord 7073 |
. . . . . . . . 9
| |
| 34 | nnord 7073 |
. . . . . . . . 9
| |
| 35 | ordtri2 5758 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | syl2an 494 |
. . . . . . . 8
|
| 37 | 29, 32, 36 | syl2anc 693 |
. . . . . . 7
|
| 38 | nnord 7073 |
. . . . . . . . 9
| |
| 39 | nnord 7073 |
. . . . . . . . 9
| |
| 40 | ordtri2 5758 |
. . . . . . . . 9
| |
| 41 | 38, 39, 40 | syl2an 494 |
. . . . . . . 8
|
| 42 | 27, 30, 41 | syl2anc 693 |
. . . . . . 7
|
| 43 | 25, 37, 42 | 3imtr4d 283 |
. . . . . 6
|
| 44 | 43 | ex 450 |
. . . . 5
|
| 45 | 44 | com23 86 |
. . . 4
|
| 46 | 19, 45 | mpdd 43 |
. . 3
|
| 47 | 46, 19 | jcad 555 |
. 2
|
| 48 | 5, 47 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-omul 7565 |
| This theorem is referenced by: nnmword 7713 nnneo 7731 ltmpi 9726 |
| Copyright terms: Public domain | W3C validator |