MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni2 Structured version   Visualization version   Unicode version

Theorem elni2 9699
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni2  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )

Proof of Theorem elni2
StepHypRef Expression
1 elni 9698 . 2  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
2 nnord 7073 . . . 4  |-  ( A  e.  om  ->  Ord  A )
3 ord0eln0 5779 . . . 4  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
42, 3syl 17 . . 3  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
54pm5.32i 669 . 2  |-  ( ( A  e.  om  /\  (/) 
e.  A )  <->  ( A  e.  om  /\  A  =/=  (/) ) )
61, 5bitr4i 267 1  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   (/)c0 3915   Ord word 5722   omcom 7065   N.cnpi 9666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066  df-ni 9694
This theorem is referenced by:  addclpi  9714  mulclpi  9715  mulcanpi  9722  addnidpi  9723  ltexpi  9724  ltmpi  9726  indpi  9729
  Copyright terms: Public domain W3C validator