MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc2 Structured version   Visualization version   Unicode version

Theorem ordunisuc2 7044
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
ordunisuc2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Distinct variable group:    x, A

Proof of Theorem ordunisuc2
StepHypRef Expression
1 orduninsuc 7043 . 2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
2 ralnex 2992 . . 3  |-  ( A. x  e.  On  -.  A  =  suc  x  <->  -.  E. x  e.  On  A  =  suc  x )
3 suceloni 7013 . . . . . . . . . 10  |-  ( x  e.  On  ->  suc  x  e.  On )
4 eloni 5733 . . . . . . . . . 10  |-  ( suc  x  e.  On  ->  Ord 
suc  x )
53, 4syl 17 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  suc  x )
6 ordtri3 5759 . . . . . . . . 9  |-  ( ( Ord  A  /\  Ord  suc  x )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
75, 6sylan2 491 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
87con2bid 344 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  -.  A  =  suc  x ) )
9 onnbtwn 5818 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  -.  ( x  e.  A  /\  A  e.  suc  x ) )
10 imnan 438 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  -.  A  e.  suc  x )  <->  -.  (
x  e.  A  /\  A  e.  suc  x ) )
119, 10sylibr 224 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
x  e.  A  ->  -.  A  e.  suc  x ) )
1211con2d 129 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( A  e.  suc  x  ->  -.  x  e.  A
) )
13 pm2.21 120 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1412, 13syl6 35 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1514adantl 482 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
16 ax-1 6 . . . . . . . . . 10  |-  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1716a1i 11 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1815, 17jaod 395 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  ->  (
x  e.  A  ->  suc  x  e.  A ) ) )
19 eloni 5733 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  Ord  x )
20 ordtri2or 5822 . . . . . . . . . . . . . 14  |-  ( ( Ord  x  /\  Ord  A )  ->  ( x  e.  A  \/  A  C_  x ) )
2119, 20sylan 488 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  Ord  A )  ->  (
x  e.  A  \/  A  C_  x ) )
2221ancoms 469 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
x  e.  A  \/  A  C_  x ) )
2322orcomd 403 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  \/  x  e.  A ) )
2423adantr 481 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  \/  x  e.  A ) )
25 ordsssuc2 5814 . . . . . . . . . . . . 13  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  <->  A  e.  suc  x ) )
2625biimpd 219 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
2726adantr 481 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
28 simpr 477 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
x  e.  A  ->  suc  x  e.  A ) )
2927, 28orim12d 883 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
( A  C_  x  \/  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3024, 29mpd 15 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  e.  suc  x  \/ 
suc  x  e.  A
) )
3130ex 450 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( x  e.  A  ->  suc  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3218, 31impbid 202 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
338, 32bitr3d 270 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( -.  A  =  suc  x 
<->  ( x  e.  A  ->  suc  x  e.  A
) ) )
3433pm5.74da 723 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
35 impexp 462 . . . . . 6  |-  ( ( ( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) )
36 simpr 477 . . . . . . . 8  |-  ( ( x  e.  On  /\  x  e.  A )  ->  x  e.  A )
37 ordelon 5747 . . . . . . . . . 10  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
3837ex 450 . . . . . . . . 9  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
3938ancrd 577 . . . . . . . 8  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( x  e.  On  /\  x  e.  A ) ) )
4036, 39impbid2 216 . . . . . . 7  |-  ( Ord 
A  ->  ( (
x  e.  On  /\  x  e.  A )  <->  x  e.  A ) )
4140imbi1d 331 . . . . . 6  |-  ( Ord 
A  ->  ( (
( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4235, 41syl5bbr 274 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4334, 42bitrd 268 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4443ralbidv2 2984 . . 3  |-  ( Ord 
A  ->  ( A. x  e.  On  -.  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
452, 44syl5bbr 274 . 2  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
461, 45bitrd 268 1  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   Ord word 5722   Oncon0 5723   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  dflim4  7048  limsuc2  37611
  Copyright terms: Public domain W3C validator