| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunisuc2 | Structured version Visualization version Unicode version | ||
| Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| ordunisuc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduninsuc 7043 |
. 2
| |
| 2 | ralnex 2992 |
. . 3
| |
| 3 | suceloni 7013 |
. . . . . . . . . 10
| |
| 4 | eloni 5733 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | syl 17 |
. . . . . . . . 9
|
| 6 | ordtri3 5759 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylan2 491 |
. . . . . . . 8
|
| 8 | 7 | con2bid 344 |
. . . . . . 7
|
| 9 | onnbtwn 5818 |
. . . . . . . . . . . . 13
| |
| 10 | imnan 438 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | sylibr 224 |
. . . . . . . . . . . 12
|
| 12 | 11 | con2d 129 |
. . . . . . . . . . 11
|
| 13 | pm2.21 120 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl6 35 |
. . . . . . . . . 10
|
| 15 | 14 | adantl 482 |
. . . . . . . . 9
|
| 16 | ax-1 6 |
. . . . . . . . . 10
| |
| 17 | 16 | a1i 11 |
. . . . . . . . 9
|
| 18 | 15, 17 | jaod 395 |
. . . . . . . 8
|
| 19 | eloni 5733 |
. . . . . . . . . . . . . 14
| |
| 20 | ordtri2or 5822 |
. . . . . . . . . . . . . 14
| |
| 21 | 19, 20 | sylan 488 |
. . . . . . . . . . . . 13
|
| 22 | 21 | ancoms 469 |
. . . . . . . . . . . 12
|
| 23 | 22 | orcomd 403 |
. . . . . . . . . . 11
|
| 24 | 23 | adantr 481 |
. . . . . . . . . 10
|
| 25 | ordsssuc2 5814 |
. . . . . . . . . . . . 13
| |
| 26 | 25 | biimpd 219 |
. . . . . . . . . . . 12
|
| 27 | 26 | adantr 481 |
. . . . . . . . . . 11
|
| 28 | simpr 477 |
. . . . . . . . . . 11
| |
| 29 | 27, 28 | orim12d 883 |
. . . . . . . . . 10
|
| 30 | 24, 29 | mpd 15 |
. . . . . . . . 9
|
| 31 | 30 | ex 450 |
. . . . . . . 8
|
| 32 | 18, 31 | impbid 202 |
. . . . . . 7
|
| 33 | 8, 32 | bitr3d 270 |
. . . . . 6
|
| 34 | 33 | pm5.74da 723 |
. . . . 5
|
| 35 | impexp 462 |
. . . . . 6
| |
| 36 | simpr 477 |
. . . . . . . 8
| |
| 37 | ordelon 5747 |
. . . . . . . . . 10
| |
| 38 | 37 | ex 450 |
. . . . . . . . 9
|
| 39 | 38 | ancrd 577 |
. . . . . . . 8
|
| 40 | 36, 39 | impbid2 216 |
. . . . . . 7
|
| 41 | 40 | imbi1d 331 |
. . . . . 6
|
| 42 | 35, 41 | syl5bbr 274 |
. . . . 5
|
| 43 | 34, 42 | bitrd 268 |
. . . 4
|
| 44 | 43 | ralbidv2 2984 |
. . 3
|
| 45 | 2, 44 | syl5bbr 274 |
. 2
|
| 46 | 1, 45 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 |
| This theorem is referenced by: dflim4 7048 limsuc2 37611 |
| Copyright terms: Public domain | W3C validator |