MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolval Structured version   Visualization version   Unicode version

Theorem ovolval 23242
Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 17-Sep-2020.)
Hypothesis
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolval  |-  ( A 
C_  RR  ->  ( vol* `  A )  = inf ( M ,  RR* ,  <  ) )
Distinct variable group:    y, f, A
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reex 10027 . . 3  |-  RR  e.  _V
21elpw2 4828 . 2  |-  ( A  e.  ~P RR  <->  A  C_  RR )
3 sseq1 3626 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  f ) ) )
43anbi1d 741 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <-> 
( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
54rexbidv 3052 . . . . . 6  |-  ( x  =  A  ->  ( E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
65rabbidv 3189 . . . . 5  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )
7 ovolval.1 . . . . 5  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
86, 7syl6eqr 2674 . . . 4  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  M )
98infeq1d 8383 . . 3  |-  ( x  =  A  -> inf ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )  = inf ( M ,  RR* ,  <  ) )
10 df-ovol 23233 . . 3  |-  vol* 
=  ( x  e. 
~P RR  |-> inf ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )
)
11 xrltso 11974 . . . 4  |-  <  Or  RR*
1211infex 8399 . . 3  |- inf ( M ,  RR* ,  <  )  e.  _V
139, 10, 12fvmpt 6282 . 2  |-  ( A  e.  ~P RR  ->  ( vol* `  A
)  = inf ( M ,  RR* ,  <  )
)
142, 13sylbir 225 1  |-  ( A 
C_  RR  ->  ( vol* `  A )  = inf ( M ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    X. cxp 5112   ran crn 5115    o. ccom 5118   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   supcsup 8346  infcinf 8347   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   (,)cioo 12175    seqcseq 12801   abscabs 13974   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-ovol 23233
This theorem is referenced by:  ovolcl  23246  ovollb  23247  ovolgelb  23248  ovolge0  23249  ovolsslem  23252  ovolshft  23279  ovolicc2  23290  ismblfin  33450  ovolval2  40858
  Copyright terms: Public domain W3C validator