Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2 Structured version   Visualization version   Unicode version

Theorem ovolval2 40858
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. See ovolval 23242 for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval2.a  |-  ( ph  ->  A  C_  RR )
ovolval2.m  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }
Assertion
Ref Expression
ovolval2  |-  ( ph  ->  ( vol* `  A )  = inf ( M ,  RR* ,  <  ) )
Distinct variable groups:    A, f,
y    ph, f, y
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolval2
StepHypRef Expression
1 ovolval2.a . . 3  |-  ( ph  ->  A  C_  RR )
2 eqid 2622 . . . 4  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }
32ovolval 23242 . . 3  |-  ( A 
C_  RR  ->  ( vol* `  A )  = inf ( { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )
)
41, 3syl 17 . 2  |-  ( ph  ->  ( vol* `  A )  = inf ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  <  ) )
52a1i 11 . . . 4  |-  ( ph  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )
6 reex 10027 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
76, 6xpex 6962 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  e. 
_V
8 inss2 3834 . . . . . . . . . . . . . 14  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
9 mapss 7900 . . . . . . . . . . . . . 14  |-  ( ( ( RR  X.  RR )  e.  _V  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR ) )  ->  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  C_  ( ( RR 
X.  RR )  ^m  NN ) )
107, 8, 9mp2an 708 . . . . . . . . . . . . 13  |-  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  C_  ( ( RR  X.  RR )  ^m  NN )
1110sseli 3599 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f  e.  ( ( RR  X.  RR )  ^m  NN ) )
12 1zzd 11408 . . . . . . . . . . . 12  |-  ( f  e.  ( ( RR 
X.  RR )  ^m  NN )  ->  1  e.  ZZ )
1311, 12syl 17 . . . . . . . . . . 11  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  1  e.  ZZ )
1413adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  1  e.  ZZ )
15 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
16 absfico 39410 . . . . . . . . . . . . . 14  |-  abs : CC
--> ( 0 [,) +oo )
17 subf 10283 . . . . . . . . . . . . . 14  |-  -  :
( CC  X.  CC )
--> CC
18 fco 6058 . . . . . . . . . . . . . 14  |-  ( ( abs : CC --> ( 0 [,) +oo )  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> ( 0 [,) +oo ) )
1916, 17, 18mp2an 708 . . . . . . . . . . . . 13  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> ( 0 [,) +oo )
2019a1i 11 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( abs  o.  -  ) : ( CC  X.  CC ) --> ( 0 [,) +oo ) )
21 rr2sscn2 39582 . . . . . . . . . . . . 13  |-  ( RR 
X.  RR )  C_  ( CC  X.  CC )
2221a1i 11 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( RR  X.  RR )  C_  ( CC 
X.  CC ) )
23 elmapi 7879 . . . . . . . . . . . . 13  |-  ( f  e.  ( ( RR 
X.  RR )  ^m  NN )  ->  f : NN --> ( RR  X.  RR ) )
2411, 23syl 17 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> ( RR  X.  RR ) )
2520, 22, 24fcoss 39402 . . . . . . . . . . 11  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( ( abs 
o.  -  )  o.  f ) : NN --> ( 0 [,) +oo ) )
2625adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
( abs  o.  -  )  o.  f ) : NN --> ( 0 [,) +oo ) )
27 eqid 2622 . . . . . . . . . 10  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
2814, 15, 26, 27sge0seq 40663 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (Σ^ `  (
( abs  o.  -  )  o.  f ) )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
2928eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) )
3029eqeq2d 2632 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  <->  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) )
3130anbi2d 740 . . . . . 6  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <-> 
( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  (
( abs  o.  -  )  o.  f ) ) ) ) )
3231rexbidva 3049 . . . . 5  |-  ( ph  ->  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) ) )
3332rabbidv 3189 . . . 4  |-  ( ph  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) } )
34 ovolval2.m . . . . . 6  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }
3534eqcomi 2631 . . . . 5  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }  =  M
3635a1i 11 . . . 4  |-  ( ph  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }  =  M )
375, 33, 363eqtrd 2660 . . 3  |-  ( ph  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }  =  M )
3837infeq1d 8383 . 2  |-  ( ph  -> inf ( { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )  = inf ( M ,  RR* ,  <  ) )
394, 38eqtrd 2656 1  |-  ( ph  ->  ( vol* `  A )  = inf ( M ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   supcsup 8346  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZcz 11377   (,)cioo 12175   [,)cico 12177    seqcseq 12801   abscabs 13974   vol*covol 23231  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ovol 23233  df-sumge0 40580
This theorem is referenced by:  ovolval3  40861
  Copyright terms: Public domain W3C validator